VARIABLE FREQUENCY DRIVE

$\mathbf{S J 7 0 0}$ series

Powermininerer

©) Hitachi Industrial Equipment Systems Co.,Ltd.

High performance, powerful

High starting Torque,
 Powerful Drive and easy setting

High starting Torque 200% at 0.3 Hz

Improved Sensorless Vector Control and Auto Tuning produce high starting torque of 200% or more at 0.3 Hz . Easy setup of motor constants Ideal for applications which need high torque, such as cranes, extruders and lifts.

Hitachi exclusive OHz Domain sensorless vector control

Develops 150% * torque at 0 Hz speed reference
Ideal for cranes and other applications that require high torque at starting.
*when inverter is one frame size larger than motor.

Position Control Function

The SJ700, with optional feedback board installed, together with an encoder-equipped motor can perform position control.
For many applications, suitable performance can be achieved at a lower cost than servo systems.
Based on your four motion parameters (position command, speed command, acceleration time and deceleration time), the SJ700 will move an object from original position A to target position B. After the movement, the inverter keeps servo lock status.

Trip avoidance function

Over current \&

 voltage suppress functionHigher internal calculation speed* improves current control performance.
Over-current suppress and Over-voltage suppress functions avoid inverter trip during acceleration and deceleration.

Over-current suppress OFF

Over-current suppress ON

DC Bus AVR Function During Deceleration

The SJ700 controls deceleration time so that the DC bus voltage does not exceed the over-voltage trip level, providing trip-less operation during deceleration.

functions, yet user friendly.

Programming [EzSQ: Easy Sequence] function

Inverter control by Built-in Programming function

Sequence operation is realized by downloading to an inverter a program created with Hitachi's EzSQ software.
Tailor inverter operation to meet changing process requirements, and replace separate PLCs in some cases. By simplifying or eliminating external hardware, signficant cost savings can be achieved.
Password function is incorporated to provide security for proprietary program data against loss or unauthorized modification.

Item		Description		
	Language type	BASIC Like		
	Supported Device	Windows(DOS/V)OS:Windows98SE, Windows2000, WindowsXP)		
	Memory area	1,024 steps or 6 k byte (Smaller of these)Program is stored in internal of inverter.		
	Programming environment	Editor(Windows), Display(Windows)		
		Grammar check(Windows)		
		Program download/upload, All clear		
	Executable format	Interpreter 2.0ms/command (Sub routine supported. 8 nested)		
$\begin{aligned} & \text { ᄃ } \\ & \text { 흐 } \\ & \text { 른 } \\ & 0 \end{aligned}$	External input	External digital contact input	Contact signal/Open collector signal input (Internal DC24V power supply available)	
			Program RUN command	FW terminal is reserved
			General-purpose input	Maximum of 8 point(X(00)-X(07))
		External analog input	XA(0) : 0-10V (O terminal)	
			XA(1) : 4-20mA (OI terminal)	
			$\mathrm{XA}(2)$: 0-10V (O2 terminal)	
	External output	General-purpose output terminal	Maximum of 8 point(Y(00)-Y(05))	
		External analog output	YA(0) : Setup for FM terminal is possible.	
			$\mathrm{YA}(1)$: Setup for AM terminal is possible.	
			YA(2) : Setup for AMI terminal is possible.	
$\begin{aligned} & \text { D} \\ & 0 \\ & 0 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \widetilde{\sim} \end{aligned}$	Command	Programmable flow control <Loop, Unconditional jump, conditional jump, Time control, Sub routine, Others>		
		Operation command <t,-,, ${ }^{*}, l$, substitution, mod, abs>		
		I/O control(Bit input, Word input, Bit output, Word output)		
		Timer control <on delay, off delay>		
		Inverter parameter setting		
	Variable	User	$\mathrm{U}(00)-\mathrm{U}(31) / 32$ point	
		Timer	UL(00)-UL(03)/4 point	
		Set frequency	SET-Freq	
		Acceleration time	ACCEL	
		Deceleration time	DECEL	
		Monitor	Output frequency, Output current, Rotative direction, PID feedback, Converted frequency, Output torque, Output voltage, Power, Cumulative RUN time, Cumulative power-on time, trip	
		General-purpose input contact	X(00)-X(07)/8 point	
		General-purpose output contact	$\mathrm{Y}(00)-\mathrm{Y}(05) / 6$ point(1 point is relay output)	
		Internal user	UB(00)-UB(07)/8 point	
		Internal timer contact	TD(0)-TD(7)/8 point	
		Inverter input and output	In a remote operator display code.	

\star Windows ${ }^{\circledR}$ is a registered trademark of Microsoft Corporation.U.S.A and other countries.

EMC Filter \& Brake circuit integrated as Standard

Built-in EMC Filter up to 150kW*

Cost and space reduction compared with external EMC Filter.
Reduces electromagnetic noise.
Meets EN61800-3 2nd-Environment

* European Version and Japanese Version does not have 150 kW

Brake circuit up to 22kW

Cost and Space reduction compared with external Braking Controller.

Ease of Maintenance

Easy-removable construction for maintenance

Field replacement of cooling fan(s) and DC bus capacitors can be accomplished in a fraction of the time.
Using Logic terminal move to SJ700 without wiring change.
Read SJ300 Parameter by SRW remote operator and write them in to SJ700

Easy-removable Cooling Fan

Easy-removable Dc bus Capacitors (above 15kW)

Long life time components \& Life time warning function

Long life time components

Design lifetime 10 Years or more for Dc bus capacitors \& Cooling Fan.
Cooling Fan ON/OFF control function for longer fan life.
*Ambient temperature: Average 40 deg C (no corrosive gases, oil mist or dust)
Design lifetime is calculated, and not guaranteed.

Life time warning function

Perform preventive maintenance before a failure occurs using the Lifetime Warning function.
DC bus capacitor, cooling fan, heat sink temperature and motor temperature can be monitored in order to replace components prior to failure.

Easy Operation

User selection of Displayed Parameters

Data comparison function

Allows display of only parameters changed from default.

User selected function

Display of up to 12 User Defined Parameters U001 to U012.

Basic mode (default)

Basic display mode for commonly used parameters.

Other Functions

-The direct input of function code selection is possible rather than scrolling through the list.
-Holding down the FUNCTION key for 3 seconds, causes the display to jump to output frequency monitor (d001) mode from any menu location.

Network compatibility

A serial RS-485 Modbus-RTU port is standard. The SJ700 can communicate with DeviceNet, PROFIBUS-DP, and other networks with communication options.
-DeviceNet is a trade mark of Open DeviceNet Vender Association, Inc. -PROFIBUS-DP is a registered trade mark of PROFIBUS Nutzer Organization

Simple \& Low cost wiring, Ease of installation and replacement

Global standards

Conformity to global standards

CE, UL, c-UL, C-Tick approvals.

$$
(\leqslant \underset{\text { LISTED }}{\text { UL us }}
$$

Logic input \& output Terminal apply sink \& source logic

Wide Input power voltage range

Input voltage 240 V for 200 V class and 480 V for 400 V class as standard.

Environmental Friendliness

Micro Surge Voltage suppress function (Patent registered in Japan, USA \& Korea)

Hitachi original PWM control method limits motor terminal voltage to less than two of inverter DC bus voltage. Lower than Hitachi motor Max. insulation voltage ($1,250 \mathrm{~V}$) (During regeneration, the motor terminal voltage may exceed the motor maximum insulation voltage $(1,250 \mathrm{~V})$)

Motor terminal voltage

$\mathrm{E}=650 \mathrm{~V}$, cable $=100 \mathrm{~m}$

EU RoHS compliant

EU RoHS compliant (except solder in power module)

Improvement of environment

Varnish coating of internal PC board \& plating of main circuit copper bus bar are standard.

Versatile Functions

Instantaneous Power Failure Disregard Function

The SJ700 ignores instantaneous power failure when power fluctuation happens frequently, as long as DC bus voltage remains higher than under-voltage trip level.

Emergency stop

Shuts down the inverter by hardware, bypassing the CPU, to achieve a reliable, emergency stop function.

Intelligent input terminal and output terminal ON/OFF delay function
Helps simplify external circuits.

Active frequency matching function

Motor frequency match restart function operates effectively even without motor residual voltage.

Controlled deceleration and stop on power loss

Analog Input Disconnection Detection Function

The SJ700 outputs a disconnection signal when frequency command through analog input is lost.

Acceleration/Deceleration curve functions

The curve shape (five kinds, such as S-curve, etc.) can be chosen according to the application requirements.

Analog Command Holding Function (AHD)

Output frequency can be changed with UP/DOWN Function, or with an analog signal as reference value. The set frequency at power shutdown can be saved, too.

Pulse train input function

Pulse train input for Frequency reference or PID feed back signal, with SJ-FB (speed feed back card option).

Integrated Input Electric Power monitor

Input electric power (kW) and Integrated input electric power for monitoring energy saving.

Automatic Carrier Frequency Adjustment Function

The SJ700 detects motor current and automatically reduces carrier frequency according to the current.

The resolution of analog outputs (voltage, current) is improved to 10 bits.

Powerful Inverter

JAB
RE009

STANDARD SPECIFICATIONS

3-phase 200V class

Model SJ700-		US Version	004LFUF2	007LFUF2	015LFUF2	022LFUF2	037LFUF2	055LFUF2	075LFUF2	110LFUF2	150LFUF2	185LFUF2	220LFUF2	300LFUF2	370LFUF2	450LFUF2	550LFUF2
		JP Version	004LFF2	007LFF2	015LFF2	022LFF2	037LFF2	055LFF2	075LFF2	110LFF2	150LFF2	185LFF2	220LFF2	300LFF2	370LFF2	450LFF2	550LFF2
Enclosure (*1)			IP20														
Applicable motor (4-pole, kW(HP)) (*2)			0.4(1/2)	0.75(1)	1.5(2)	2.2(3)	3.7(5)	5.5(7.5)	7.5(10)	11(15)	15(20)	18.5(25)	22(30)	30(40)	37(50)	45(60)	55(75)
Output Ratings	Rated capacity (kVA)	200 V	1.0	1.7	2.5	3.6	5.7	8.3	11.0	15.9	22.1	26.3	32.9	41.9	50.2	63.0	76.2
		240 V	1.2	2.0	3.1	4.3	6.8	9.9	13.3	19.1	26.6	31.5	39.4	50.2	60.2	75.6	91.4
	Rated output current (A)		3	5	7.5	10.5	16.5	24	32	46	64	76	95	121	145	182	220
	Overload capacity(output current)		150\%,60sec., $200 \%, 3 \mathrm{sec}$.														
	Rated output voltage (*3)		3 -phase (3-wire) 200 to 240 V (corresponding to input voltage)														
Input Rating	Rated input voltage (V)		3-phase 200 to $240 \mathrm{~V}+10 \%,-15 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$														
	Rated input current (A)		3.3	5.5	8.3	12	18	26	35	51	70	84	105	133	160	200	242
Braking	Dynamic braking (Short-time) (*4)		Built-in BRD circuit (optional resistor)											External dynamic braking unit (option)			
	Minimum value of resistor (Ω)		50	50	35	35	35	16	10	10	7.5	7.5	5	-			
Vibration (*5)			$5.9 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{G}), 10-55 \mathrm{~Hz}$											$2.9 \mathrm{~m} / \mathrm{s}^{2}(0.3 \mathrm{G}), 10-55 \mathrm{~Hz}$			
EMC filter			Built-in														
Zero-phase Reactor			Built-in														
Weight (lbs.)			3.5(7.7)	3.5(7.7)	3.5(7.7)	3.5(7.7)	3.5(7.7)	6(13.2)	6(13.2)	6(13.2)	14(30.8)	14(30.8)	14(30.8)	22(48.4)	30(66)	36(66)	43(94.6)

3-phase 400 V class

Model SJ700-		European Version	007HFEF2	015HFEF2	022HFEF2	040HFEF2	055HFEF2	075HFEF2	110HFEF2	150HFEF2	185HFEF2	220HFEF2	300HFEF2	370HFEF2	450HFEF2	550HFEF2
		US Version	007HFUF2	015HFUF2	022HFUF2	040HFUF2	055HFUF2	075HFUF2	110HFUF2	150HFUF2	185HFUF2	220HFUF2	300HFUF2	370HFUF2	450HFUF2	550HFUF2
		JP Version	007HFF2	015HFF2	022HFF2	037HFF2	055HFF2	075HFF2	110HFF2	150HFF2	185HFF2	220HFF2	300HFF2	370HFF2	450HFF2	550HFF2
Enclosure (*1)			IP20													
Applicable motor (4-pole, kW(HP)) (*2)			0.75(1)	1.5(2)	2.2(3)	$\begin{aligned} & 3.7(5) \\ & 4.0(5) \end{aligned}$	5.5(7.5)	7.5(10)	11(15)	15(20)	18.5(25)	22(30)	30(40)	37(50)	45(60)	55(75)
Output Ratings	Rated capacity (kVA)	400 V	1.7	2.5	3.6	5.7	9.7	13.1	17.3	22.1	26.3	33.2	40.1	51.9	63.0	77.6
		480 V	2.0	3.1	4.3	6.8	11.6	15.8	20.7	26.6	31.5	39.9	48.2	62.3	75.6	93.1
	Rated output current (A)		2.5	3.8	5.3	9.0	14	19	25	32	38	48	58	75	91	112
	Overload capacity(output current)		150\%,60sec., 200\%,3sec.													
	Rated output vo	age (*3)	3 -phase (3 -wire) 380 to 480 V (corresponding to input voltage)													
Input Rating	Rated input voltage (V)		3 -phase 380 to $480 \mathrm{~V}+10 \%,-15 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$													
	Rated input current (A)		2.8	4.2	5.8	9.9	17	23	30	35	42	53	64	83	100	123
Braking	Dynamic braking (Short-time) (*4)		Built-in BRD circuit (optional resistor)										External dynamic braking unit (option)			
	Minimum value of resistor (Ω)		100	100	100	70	70	35	35	24	24	20	-			
Vibration (*5)			$5.9 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{G}), 10-55 \mathrm{~Hz}$										$2.9 \mathrm{~m} / \mathrm{s}^{2}(0.3 \mathrm{G}), 10-55 \mathrm{~Hz}$			
EMC filter			Built-in													
Zero-phase Reactor			Built-in													
Weight (lbs.)			3.5(7.7)	3.5(7.7)	3.5(7.7)	3.5(7.7)	6(13.2)	6(13.2)	6(13.2)	14(30.8)	14(30.8)	14(30.8)	22(48.4)	30(66)	30(66)	30(66)

Model SJ700-		European Version	750HFEF2	900HFEF2	1100HFEF2	132OHFEF2	1850HFE2	2200HFE2	3150HFE2	4000HFE2
		US Version	750HFUF2	900HFUF2	1100HFUF2	1500HFUF2	1850HFU2	2200HFU2	3150HFU2	4000HFU2
		JP Version	750HFF2	900HFF2	1100HFF2	1320HFF2	1850HF2	2200HF2	3150HF2	4000HF2
Enclosure (*1)			IP00							
Applicable motor (4-pole, kW(HP)) (*2)			75(100)	90(125)	110(150)	132(150)	185(250)	220(300)	315(400)	400(550)
Output Ratings	Rated capacity (kVA)	400 V	103.2	121.9	150.3	180.1	256	305	416	554
		480 V	123.8	146.3	180.4	216.1	308	366	499	665
	Rated output current (A)		149	176	217	260	370	440	600	800
	Overload capacity(output current)		150\%,60sec., 200\%,0.5sec.				150\%,60sec., $180 \%, 0.5 \mathrm{sec}$.			
	Rated output vo	age (*3)	3 -phase (3-wire) 380 to 480 V (corresponding to input voltage)							
Input Rating	Rated input voltage (V)		3 -phase 380 to $480 \mathrm{~V}+10 \%,-15 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$							
	Rated input current (A)		164	194	239	286	389	455	630	840
Braking	Dynamic braking (Short-time) (*4)		External dynamic braking unit (option)							
	Minimum value of resistor (Ω)		-							
Vibration (*5)			$2.9 \mathrm{~m} / \mathrm{s}^{2}(0.3 \mathrm{G}), 10-55 \mathrm{~Hz}$				$1.96 \mathrm{~m} / \mathrm{s}^{2}(0.2 \mathrm{G}), 10-55 \mathrm{~Hz}$			
EMC filter			Built-in				External Option			
Zero-phase Reactor			Built-in				External Option			
Weight (lbs.)			55(121)	55(121)	70(154)	70(154)	140(308)	145(319)	210(462)	360(792)

STANDARD SPECIFICATIONS

Model Name Indication

SJ700-055 H F E F 2

General Specifications

Items			General Specifications
Control	Control method		Line to line sine wave pulse-width modulation (PWM) control
	Output frequency range (*6)		$0.1-400.0 \mathrm{~Hz}$ (185 kW and over:0.1-120Hz)
	Frequency accuracy		Digital: $\pm 0.01 \%$ of the maximum frequency, Analog: $\pm 0.2 \%\left(25 \pm 10^{\circ} \mathrm{C}\right)$
	Frequency resolution		Digital setting: 0.01 Hz , Analog setting: (Maximum frequency)/4,000 (O terminal: 12bit 0-10V, O2 terminal: $12 \mathrm{bit}-10-10 \mathrm{~V}$)
	V/f characteristics		V/f optionally variable ($30-400 \mathrm{~Hz}$ of base frequency), V/f control (constant torque, reduced torque), Sensorless vector control
	Speed fluctuation		$\pm 0.5 \%$ (sensorless vector control)
	Acceleration/deceleration time		0.01-3,600sec. (Linear/curve, accel./decel. selection), Two-stage accel./decel.
	Starting Torque		200% at 0.3 Hz (Sensorless vector control), 150% at around 0 Hz (Sensorless vector control, 0 Hz domain with motor one frame size down)
	Carrier frequency range		$0.5-15.0 \mathrm{kHz}(185 \mathrm{~kW}$ and over:0.5-3.0kHz)
	DC braking		Performs at start: under set frequency at deceleration, via an external input (braking force, time, and operating frequency).
Input signal	Frequency setting	Operator	Up and Down keys
		External signal*8	DC 0-10V, -10-+10V (input impedance 10k $), 4-20 \mathrm{~mA}$ (input impedance 100 ${ }^{\text {) }}$
		External port	Setting via RS485 communication
	Forward /reverse Start /stop	Operator	Start/stop commands (forward/reverse switching by parameter setting)
		External signal	Forward-operation start/stop commands (reverse-operation start/stop possible when relevant commands are assigned to intelligent input terminals)3-wire input possible (when relevant commands are assigned to control circuit terminals)
		External port	Setting via RS485 communication
		Terminals	8 terminals, NO/NC switchable, sink logic/source logic switchable
	Intelligent input terminals	Functions	Reverse operation (RV), Multi-speed 1 setting (CF1), Multi-speed 2 setting (CF2), Multi-speed 3 setting (CF3), Multi-speed 4 setting (CF4), Jogging (JG), external DC braking (DB), 2nd motor control (SET), 2-stage acceleration/deceleration (2CH), free-run stop (FRS), external trip (EXT), unattended start protection (USP), commercial power supply switching (CS), software lock (SFT), analog input switching (AT), 3rd motor control (SET3), reset (RS), starting by 3 -wire input (STA), stopping by 3 -wire input (STP), forward/reverse switching by 3 -wire input (F/R), PID disable (PID), PID integration reset (PIDC), control gain switching (CAS), acceleration by remote control (UP), deceleration by remote control (DWN), data clearance by remote control (UDC), forcible operation (OPE), Multi-speed bit 1 (SF1), Multi-speed bit 2 (SF2), Multi-speed bit 3 (SF3), Multi-speed bit 4 (SF4), Multi-speed bit 5 (SF5), Multi-speed bit 6 (SF6), Multi-speed bit 7 (SF7), overload restriction selection (OLR), torque limit selection (enabling/disabling) (TL), torque limit 1 (TRQ1), torque limit 2 (TRQ2), P/PI switching (PPI), braking confirmation (BOK), orientation (ORT), LAD cancellation (LAC), clearance of position deviation (PCLR), permission of 90° shift phase (STAT), trigger for frequency addition (A145) (ADD), forcible-terminal operation (F-TM), permission of torque command input (ATR), cumulative power clearance (KHC), servo-on (SON), pre-excitation (FOC), general-purpose input 1 (MI1), general-purpose input 2 (MI2), general-purpose input 3 (MI3), general-purpose input 4 (MI4), general-purpose input 5 (MI5), general-purpose input 6 (MI6), general-purpose input 7 (MI7), general-purpose input 8 (MI8), analog command holding (AHD), no assignment (no)
	Thermistor input		1 terminal (PTC characteristics)
Output signal	Intelligent output terminals	Terminals	5 open-collector output terminals, NO/NC switchable, sink logic/source logic switchable 1 relay (1c-contact) output terminal: NO/NC switchable
		Functions	Running (RUN), constant-speed reached (FA1), set frequency overreached (FA2), overload notice advance signal (1) (OL), output deviation for PID control (OD), alarm signal (AL), set frequency reached (FA3), over-torque (OTQ), instantaneous power failure (IP), undervoltage (UV), torque limited (TRQ), operation time over (RNT), plug-in time over (ONT), thermal alarm signal (THM), brake release (BRK), braking error (BER), 0 Hz detection signal (ZS), speed deviation maximum (DSE), positioning completed (POK), set frequency overreached 2 (FA4), set frequency reached 2 (FA5), overload notice advance signal (2) (OL2), PID feedback comparison (FBV), communication line disconnection (NDc), logical operation result 1 (LOG1), logical operation result 2 (LOG2), logical operation result 3 (LOG3), logical operation result 4 (LOG4), logical operation result 5 (LOG5), logical operation result 6 (LOG6), capacitor life warning (WAC), cooling-fan speed drop (WAF), starting contact signal (FR), heat sink overheat warning (OHF), low-current indication signal (LOC), general-purpose output 1 (M01), general-purpose output 2 (M02), general-purpose output 3 (M03), general-purpose output 4 (M04), general-purpose output 5 (M05), general-purpose output 6 (M06), inverter ready (IRDY), forward rotation (FWR), reverse rotation (RVR), major failure (MJA), alarm code 0 to 3 (ACO to AC3)
		Monitor output terminals	Analog voltage output, analog current output, pulse-string output (e.g., A-F, D-F [n-fold, pulse output only], A, T, V, P)
Monitoring on display			Output frequency, output current, output torque, frequency conversion data, trip history, input/output terminal status, electric power, and others
Other functions			Free V/f setting (7 breakpoints), frequency upper/lower limit, jump (center) frequency, acceleration/deceleration according to characteristic curve, manual torque boost level/breakpoint, energy-saving operation, analog meter adjustment, start frequency setting, carrier frequency adjustment, electronic thermal function (available also for free setting), external start/end frequency/frequency rate, analog input selection, retry after trip, restart after instantaneous power failure, output of various signals, starting with reduced voltage, overload restriction, initial-value setting, automatic deceleration at power failure, AVR function, fuzzy acceleration/deceleration, online/offline auto-tuning, high-torque multi-motor operation (sensorless vector control of two motors by one inverter)
Protective functions			Overcurrent protection, overvoltage protection, undervoltage protection, electronic thermal protection, temperature error protection, instantaneous power failure protection, phase loss input protection, braking-resistor overload protection, ground-fault current detection at power-on, USP error, external trip, emergency stop trip, CT error, communication error, option board error, and others
Environmental conditions	Ambient operating/storage temperature(*7)/ humidity		$-10-50^{\circ} \mathrm{C} /-20-65^{\circ} \mathrm{C} / 20-90 \% \mathrm{RH}$ (No condensation)
	Location		Altitude $1,000 \mathrm{~m}$ or less, indoors (no corrosive gases or dust)
Options	Digital input expansion card		SJ-DG (4digits BCD, 16bits binary)
	Feedback expansion card		SJ-FB (vector control loop speed sensor)
	Network interface card		SJ-DN2(DeviceNetTM), SJ-PBT(PROFIBUSR)
	Others		EMI filters, input/output reactors, radio noize filters, braking resistors, braking units, LCR filter, communication cables

*1: The protection method conforms to JEM 1030.
*2: The applicable motor refers to Hitachi standard 3-phase motor (4-pole).
To use other motors, be sure to prevent the rated motor current $(50 \mathrm{~Hz})$ from exceeding the rated output current of the inverter.
*3: The output voltage decreases as the main power supply voltage decreases except for the use of AVR function.
*4: Braking resistor is not integrated in the inverter. Please install optional braking resistor or dynamic braking unit when large braking torque is required.
*5: Conforms to the test method specified in JIS C0040(1999),
*6: To operate the motor beyond $50 / 60 \mathrm{~Hz}$, please consult with the motor manufacturer about the maximum allowable rotation speed.
*7: Storage temperature refers to the temperature in transportation.

*9: Please be sure to connect DC reactor attached to $1850 \mathrm{HF}, 3150 \mathrm{HF}$ and 4000 HF .

DIMENSIONS

-SJ700-004~037 LFUF2,LFF2
-SJ700-007~037HFEF2, HFUF2, HFF2

-SJ700-150~220 LFUF2,LFF2 /HFEF2, HFUF2,HFF2

-SJ700-370~450 LFUF2,LFF2
-SJ700-370~550 HFEF2, HFUF2,HFF2

-SJ700-055~110 LFUF2,LFF2 /HFEF2, HFUF2,HFF2

-SJ700-300 LFUF2,LFF2 /HFEF2, HFUF2, HFF2

-SJ700-550 LFUF2,LFF2

[^0]
DIMENSIONS

-SJ700-750, 900HFEF2, HFUF2, HFF2

-SJ700-1100HFEF2, HFUF2, HFF2 / 1320HFEF2, HFF2, 1500HFUF2

DIMENSIONS

- SJ700-1850,2200HFEF2,HFUF2,HFF2

- Attachment DC reactor(DCL-H-185)

- SJ700-3150HFEF2,HFUF2,HFF2
- Attachment DC reactor(DCL-H-315)

- SJ700-4000HFEF2,HFUF2,HFF2

- Attachment DC reactor(DCL-H-400)

[Unit : mm(inch)] Inches for reference only.

OPERATION and PROGRAMMING

SJ700 Series can be easily operated with the digital operator provided as standard. The digital operator can also be detached and can be used for remote-control. Multilingual (English, French, German, Italian, Spanish and Portuguese) operator with copy function (SRW-0EX) and digital operator with potentiometer are also available as options.

Parameter Display

Displays frequency, motor current, rotational speed of the motor, and an alarm code.

Monitor LEDs
Shows drive status.
RUN key enable LED
Lights up when the inverter is ready to respond to the RUN key.
RUN Key
Press to run the motor.

Press to run the motor.

STOP/RESET Key

Press to stop the drive or reset an alarm.

Function Key
Press to set or monitor a parameter value.

Setting the output frequency

Power LED

Lights when the power input to the drive is ON .

ALARM LED

Lights to indicate that the inverter has tripped.

Display Unit LEDs

Indicates the unit associated with the parameter display.

Store Key

Press to write the new value to the EEPROM.

Up/Down Keys

Press up or down to sequence through parameters and functions shown on the display, and increment/decrement values.

The contents of a basic mode display.(default)
If a desired parameter is not displayed, check the setting of function "b037" (function code display restriction). To display all parameters, specify " 00 " for "b037".

No.	Display code	
1	d001 to d104	Monitor display
2	F001	Output frequency setting
3	F002	Acceleration (1) time setting
4	F003	Deceleration (1) time setting
5	F004	Operation direction setting
6	A001	Frequency source setting
7	A002	Run command source setting
8	A003	Base frequency setting
9	A004	Maximum frequency setting
10	A005	[AT] selection
11	A020	Multi-speed frequency setting
12	A021	Multi-speed 1 setting
13	A022	Multi-speed 2 setting
14	A023	Multi-speed 3 setting
15	A044	1st control method
16	A045	V/f gain setting
17	A085	Operation mode selection
18	b001	Selection of restart mode
19	b002	Allowable under-voltage power failure time
20	b008	Retry-after-trip selection
21	b011	Retry wait time after trip
22	b037	Function code display restriction
23	b083	Carrier frequency setting
24	b084	Initialization mode selection
25	b130	Selection of overvoltage suppression function
26	b131	Setting of overvoltage suppression level
27	C021	Setting of intelligent output terminal 11
28	C022	Setting of intelligent output terminal 12
29	C036	Alarm relay active state

TERMINALS

MAIN CIRCUIT TERMINALS

- Terminal Description

Terminal Symbol	Terminal Name	Terminal Symbol	Terminal Name	
$\mathrm{R}(\mathrm{L} 1), \mathrm{S}(\mathrm{L} 2), \mathrm{T}(\mathrm{L} 3)$	Main power supply input terminals	$\mathrm{P}(+), \mathrm{N}(-)$	External braking unit connection terminals	
$\mathrm{U}(\mathrm{T} 1), \mathrm{V}(\mathrm{T} 2), \mathrm{W}(\mathrm{T} 3)$	Inverter output terminals	$\mathrm{e}(\mathrm{G})$	Ground connection terminal	
$\mathrm{PD}(+1), \mathrm{P}(+)$	DC reactor connection terminals	$\mathrm{Ro}(\mathrm{Ro}), \mathrm{To}\left(\mathrm{T}_{0}\right)$	Control power supply input terminals	
$\mathrm{P}(+), \mathrm{RB}(\mathrm{RB})$	External braking resistor connection terminals			

- Screw Diameter and Terminal Width

Model	Screw diameter	Terminal width (mm)	
004~037LFUF2,LFF2/007~037HFEF2,HFUF2,HFF2	M4	13	
055,075LFUF2,LFF2,HFEF2,HFUF2,HFF2	M5	18	
110LFUF2,LFF2,HFEF2,HFUF2,HFF2	M6	18	
150,185LFUF2,LFF2,150-300HFEF2,HFUF2,HFF2	M6	23 *	
220,300LFUF2,LFF2	M8	23	
370,450LFUF2,LFF2,370-550HFEF2,HFUF2,HFF2	M8	29 *2	
550LFUF2LF2,LFF2	M10	40	
750,900HFEF2,HFUF2,HFF2	M10	29	
1100HFEF2/,HFUF2,HFF2/1320HFEF2,HFF2/1500HFUF2	M10	40 *	
1850,2200HFEF2,HFUF2,HFF2	M16	51 *	
3150HFEF2,HFUF2,HFF2	M16	45	
4000HFEF2,HFUF2,HFF2	M12	50	*1 Ground Screw diameter is M6
RoTo terminals (All models)	M4	9	*2 Ground Screw diameter is M8 *3 Ground Screw diameter is M12

- Terminal Arrangement

-004~037LFUF2, LFF2/007~037HFEF2, HFUF2, HFF2

Ro	To

	$\begin{array}{\|c} \mathbf{S} \\ \text { (L2) } \end{array}$	$\begin{gathered} \mathbf{T} \\ \text { (L3) } \end{gathered}$	$\underset{(\mathbf{T} 1)}{\mathbf{U}}$	(T2)	
1)	$(+)$	$(-)$	$\begin{aligned} & \text { RB } \\ & \text { (RB) } \end{aligned}$	G)	Θ (G)

1850,2200HFEF2,HFUF2, HFF2

3150HFEF2,HFUF2, HFF2

Ro	T0
(Ro)	(To)

$\underset{(+)}{\mathbf{P}}$

	\mathbf{R}
(G)	$(\mathbf{L 1})$

| $\underset{(+)}{\mathbf{P}}$ | $\begin{array}{c}\mathbf{N} \\ (-)\end{array}$$\mathbf{U}$
 $(\mathbf{T} 1)$ |
| :---: | :---: | :---: |

\mathbf{V}
$(\mathbf{T} 2)$

(G)

300-370LFUF2,LFF2
300-550HFEF2, HFUF2,HFF2

4000HFEF2, HFUF2, HFF2

450-550LFUF2,LFF2

750-1100HFEF2,HFUF2,HFF2 1320HFEF2,HFF2/1500HFUF2

$$
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline \mathbf{R} & \mathbf{S} & \mathbf{T} & \mathbf{P D} & \mathbf{P} & \mathbf{N} & \mathbf{U} & \mathbf{V} & \mathbf{W} \\
(\mathrm{L} 1) & (\mathrm{L} 2) & (+1) & \underset{(+)}{ } & (-) & (\mathrm{T} 1) & (\mathrm{T} 2) & (\mathrm{T} 3) \\
\hline
\end{array}
$$

TERMINALS

CONTROL CIRCUIT TERMINALS

- Terminal Description

			Symbol	Name	Explanation of Terminals	Ratings
$\begin{aligned} & \text { ס } \\ & \frac{0}{\pi} \\ & \frac{\pi}{4} \end{aligned}$	Power Supply		L	Common Terminal for Analog Power Source	Common terminal for $\mathrm{H}, \mathrm{O}, \mathrm{O} 2, \mathrm{OI}, \mathrm{AM}$, and AMI. Do not ground.	-
			H	Power Source for Frequency Setting	Power supply for frequency command input	DC 10V, $20 \mathrm{~mA} \mathrm{max}$.
	Frequency Setting		0	Frequency Command Terminal	Maximum frequency is attained at DC 10V in DC 0-10V range. Set the voltage at A014 to command maximum frequency below DC 10V.	Input impedance: $10 \mathrm{k} \Omega$, Allowable input voltage range: DC $-0.3-+12 \mathrm{~V}$
			O2	Frequency Command Extra Terminal	O2 signal is added to the frequency command of O or OI in $\mathrm{DC} 0- \pm 10 \mathrm{~V}$ range. By changing configuration, frequency command can be input also at O 2 terminal.	Input impedance:10k Ω, Allowable input voltage range: DC $0- \pm 12 \mathrm{~V}$
			OI	Frequency Command Terminal	Maximum frequency is attained at DC 20 mA in DC $4-20 \mathrm{~mA}$ range. When the intelligent terminal configured as AT is on, OI signal is enabled.	Input impedance: 100 Ω, Allowable input voltage range: DC $0-24 \mathrm{~mA}$
	Monitor Output		AM	Analog Output Monitor (Voltage)	Selection of one function from: Output frequency, output current, torque, output voltage, input power, electronic thermal load ratio, and LAD frequency.	DC 0-10V, 2mA max.
			AMI	Analog Output Monitor (Current)		DC 4-20mA, 250Ω max.
$\begin{aligned} & \bar{\Pi} \\ & \stackrel{\pi}{0} \\ & \overline{0} \end{aligned}$	Monito	Output	FM	Digital Monitor (Voltage)	[DC0-10V output (PWM output)] Selection of one function from: Output frequency, output current, torque, output voltage, input power, electronic thermal load ratio, and LAD frequency. [Digital pulse output (Pulse voltage DC $0 / 10 \mathrm{~V}$)] Outputs the value of output frequency as digital pulse (duty 50%)	Digital output frequency range: $0-3.6 \mathrm{kHz}, 1.2 \mathrm{~mA}$ max.
	Power Supply		P24	Power Terminal for Interface	Internal power supply for input terminals. In the case of source type logic, common terminal for contact input terminals.	DC 24V, 100 mA max .
			CM1	Common Terminal for Interface	Common terminal for P24, TH, and FM. In the case of sink type logic, common terminal for contact input terminals. Do not ground.	-
	Contact Input	Run Command	FW	Forward Command Input	The motor runs forward when FW terminal is ON, and stops when FW is OFF.	[Input ON condition] Voltage between each terminal and PLC: DC 18 V min . [Input OFF condition] Voltage between each terminal and PLC: DC 3V max. Input impedance between each terminal and PLC: 4.7Ω Allowable maximum voltage between each terminal and PLC: DC 27V
		Functions	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	Intelligent Input Terminals	Assign 8 functions to terminals. (Refer to the standard specifications for the functions.)	
		Common Terminal	PLC	Common Terminal for Intelligent Input Terminals, Common Terminal for External Power Supply for PLCs, etc.	Select sink or source logic with the short-circuit bar on the control terminals. Sink logic: Short P24 to PLC / Source logic: Short CM1 to PLC. When applying external power source, remove the short-circuit bar and connect PLC terminal to the external device.	
	Open Collector Output	State	$\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \end{aligned}$	Intelligent Output Terminals	Assign 5 functions to open collector outputs. When the alarm code is selected at C062, terminal 11-13 or 11-14 are reserved for error codes of inverter trip. (Refer to the standard specifications for the functions.) Both sink and source logic are always applicable between each terminal and CM1.	Decrease in voltage between each terminal and CM2: 4 V max. during ON Allowable maximum voltage: DC 27V Allowable maximum current: 50 mA
			CM2	Common Terminal for Intelligent Output Terminals	Common terminal for intelligent output terminal 11-15.	
$\begin{aligned} & \frac{0}{\pi} \\ & \frac{0}{\pi} \\ & \frac{1}{4} \end{aligned}$	Analog Input	Sensor	TH	Thermistor Input Terminals	The inverter trips when the external thermistor detects abnormal temperature. Common terminal is CM1. [Recommended thermistor characteristics] Allowable rated power: 100 mW or over. Impedance in the case of abnormal temperature: $3 \mathrm{k} \Omega$ Note: Thermal protection level can be set between 0 and 9999Ω.	Allowable input voltage range
$\begin{aligned} & \overline{\bar{x}} \\ & \stackrel{0}{0} \end{aligned}$	Relay Output	State/ Alarm	ALO AL1 AL2	Alarm Output Terminals	In default setting, an alarm is activated when inverter output is turned off by a protective function.	Maximum capacity of relays AL1-ALO: AC 250V, 2A(R load)/0.2A(L load) DC 30V, 8A(R load)/0.6A(L load) AL2-ALO: AC 250V, 1A(R load)/0.2A(L load) DC 30V, 1 A (R load)/0.2A(L load) Minimum capacity of relays AL1-ALO, AL2-ALO: AC100V, 10 mA DC5V, 100 mA

- Terminal Arrangement

FUNCTION LIST

OMONITORING FUNCTIONS and MAIN PROFILE PARAMETERS

Code		Function Name	Monitored data or setting	Default Setting			Settingduring operation（allowed or not）	Changeduring operation（allowed or not）	
		－FE（CE）		－FU（UL）	－F（JP）				
	d001		Output frequency monitor	0.00 to $99.99,100.0$ to $400.0(\mathrm{~Hz})$	－	－	－	\bigcirc	－
	d002	Output current monitor	0.0 to 999．9， 1000 to 9999 （A）	－	－	－	－	－	
	d003	Rotation direction minitoring	F （forward rotation），o（stopped），r（reverse rotation）	－	－	－	－	－	
	d004	Process variable（PV），PID feedback monitor	0.00 to 99．99， 100.0 to 999．9，1000．to 9999． 1000 to 9999 （10000 to 99990），［100 to 「999（10000 to 999000）	－	－	－	－	－	
	d005	Intelligent input terminal status		－	－	－	－	－	
	d006	Intelligent output terminal status		－	－	－	－	－	
	d007	Scaled output frequency monitoring	0.00 to 99．99， 100.0 to 999．9，1000．to 9999．， 1000 to 3996 （10000 to 39960）	－	－	－	\bigcirc	－	
	d008	Actual－frequency monitoring	－400．to－100．，－99．9 to 0.00 to $99.99,100.0$ to 400.0 （Hz）	－	－	－	－	－	
	d009	Torque command monitoring	－200．to＋200．（\％）	－	－	－	－	－	
	d010	Torque bias monitoring	－200．to＋200．（\％）		－	－	－	－	
	d012	Torque monitoring	－200．to＋200．（\％）	－	－	－	－	－	
	d013	Output voltage monitoring	0.0 to 600.0 （V）	－	－	－	－	－	
	d014	Power monitoring	0.0 to 999.9 （kW）	－	－	－	－	－	
	d015	Cumulative power monitoring	0.0 to 999．9，1000．to 9999．，1000 to 9999（10000 to 99990），［100 to 「999（100000 to 999000）	－	－	－	－	－	
	d016	Cumulative operation RUN time monitoring	0．to 9999．， 1000 to 9999 （10000 to 99990），Г100 to 「999（10000 to 999000）（hr）	－	－	－	－	－	
	d017	Cumulative power－on time monitoring	0．to $9999 ., 1000$ to 9999 （10000 to 99990），Г100 to 「999（10000 to 999000）（hr）	－	－	－	－	－	
	d018	Heat sink temperature monitoring	－020．to $200.0\left(^{\circ} \mathrm{C}\right.$ ）	－	－	－	－	－	
	d019	Motor temperature monitoring	－020．to $200.0\left(^{\circ} \mathrm{C}\right.$ ）	－	－	－	－	－	
	d022	Life－check monitoring		－	－	－	－	－	
	d023	Program counter	0 to 512	－	－	－	－	－	
	d024	Program number monitoring	0000 to 9999	－	－	－	－	－	
	d025	User monitor 0	-2147483647 to 2147483647 （upper 4 digits including＂－＂）	－	－	－	－	－	
	d026	User monitor 1	－2147483647 to 2147483647 （upper 4 digits including＂－＂）	－	－	－	－	－	
	d027	User monitor 2	-2147483647 to 2147483647 （upper 4 digits including＂－＂）	－	－	－	－	－	
	d028	Pulse counter	0 to 2147483647 （upper 4 digits）	－	－	－	－	－	
	d029	Position setting monitor	-1073741823 to 1073741823 （upper 4 digits including＂－＂）	－	－	－	－	－	
	d030	Position feedback monitor	-1073741823 to 1073741823 （upper 4 digits including＂－＂）	－	－	－	－	－	
	d080	Trip Counter	0．to 9999．， 1000 to 6553 （10000 to 65530）（times）	－	－	－	－	－	
	$\begin{aligned} & \text { do81 } \\ & \text { do86 } \\ & \hline \end{aligned}$	Trip monitoring 1－6	Factor，frequency（ Hz ），current（A），voltage across $\mathrm{P}-\mathrm{N}(\mathrm{V})$ ， running time（hours），power－on time（hours）	－	－	－	－	－	
	d090	Programming error monitoring	Warning code	－	－	－	－	－	
	d102	DC voltage monitoring	0.0 to 999.9 （V）	－	－	－	－	－	
	d103	BRD load factor monitoring	0.0 to 100.0 （\％）	－	－	－	－	－	
	d104	Electronic thermal overload monitoring	0.0 to 100.0 （\％）	－	－	－	－	－	
	F001	Output frequency setting	0.0 ，＂start frequency＂to＂maximum frequency＂（or maximum frequency，2nd／3rd motors）（ Hz ） 0.0 to 100.0 （when PID function is enabled）	0.00 Hz	0．00Hz	0．00Hz	\bigcirc	\bigcirc	
	F002	Acceleration（1）time setting	0.01 to 99．99， 100.0 to $999.9,1000$ ．to 3600 ．（s）	30．00s	30．00s	30．00s	\bigcirc	\bigcirc	
	F202	Acceleration（1）time setting，2nd motor	0.01 to 99．99， 100.0 to $999.9,1000$ ．to 3600 ．（s）	30．00s	30．00s	30．00s	\bigcirc	\bigcirc	
	F302	Acceleration（1）time setting，3rd motor	0.01 to 99．99， 100.0 to $999.9,1000$ ．to 3600 ．（s）	30．00s	30．00s	30．00s	\bigcirc	\bigcirc	
	F003	Deceleration（1）time setting	0.01 to 99．99， 100.0 to $999.9,1000$ ．to 3600 ．（s）	30．00s	30．00s	30．00s	\bigcirc	\bigcirc	
	F203	Deceleration time setting，2nd motor	0.01 to 99．99， 100.0 to $999.9,1000$ ．to 3600 ．（s）	30．00s	30．00s	30．00s	\bigcirc	\bigcirc	
	F303	Deceleration time setting，3rd motor	0.01 to 99．99， 100.0 to $999.9,1000$ ．to 3600 ．（s）	30．00s	30．00s	30．00s	\bigcirc	\bigcirc	
	F004	Keypad Run key routing	00 （forward rotation）， 01 （reverse rotation）	00	00	00	\times	\times	
	A－－－	A Group：Standard functions							
	b－－－	b Group：Fine tuning functions							
	C－－－	C Group：Intelligent terminal functions							
	H－－－	H Group：Motor constants functions							
	P－－－	P Group：Expansion card functions							
	U－－－	U Group：User－selectable menu functions							

OA GROUP：STANDARD FUNCTIONS

［ $\bigcirc=$ Allowed $\mathrm{X}=$ Not permitted］

Code		Function Name
の＝\＃00000	A001	Frequency source setting
	A002	Run command source setting
	A003	Base frequency setting
	А203	Base frequency setting，2nd motor
	А303	Base frequency setting，3rd motor
	A004	Maximum frequency setting
	A204	Maximum frequency setting，2nd motor
	A304	Maximum frequency setting，3rd motor
Analog input and others	A005	［AT］selection
	A006	［O2］selection
	A011	O－L input active range start frequency
	A012	O－L input active range end frequency

Monitored data or setting	Default Setting			Settingduring operation（allowed or not）	Changeduring operation（allowed or not）
	－FE（CE）	－FU（UL）	－F（JP）		
00 （keypad potentiometer）（＊1）， 01 （control circuit terminal block）， 02 （digital operator）， 03 （RS485）， 04 （option 1）， 05 （option 2）， 06 （pulse－string input）， 07 （easy sequence）， 10 （operation function result）	01	01	02	\times	\times
01 （control circuit terminal block）， 02 （digital operator）， 03 （RS485）， 04 （option 1）， 05 （option 2）	01	01	02	\times	\times
30．to＂maximum frequency＂（Hz）	50.	60.	60.	\times	\times
30．to＂maximum frequency，2nd motor＂（Hz）	50.	60.	60.	\times	\times
30．to＂maximum frequency，3rd motor＂（Hz）	50.	60.	60.	\times	\times
30．to 400．（Hz）	50.	60.	60.	\times	\times
30．to 400．（Hz）	50.	60.	60.	\times	\times
30．to 400．（Hz）	50.	60.	60.	\times	\times
00 （switching between O and Ol terminals）， 01 （switching between O and O 2 terminals）， 02 （switching between O terminal and keypad potentiometer）（＊1）， 03 （switching between Ol terminal and keypad potentiometer）（＊1）， 04 （switching between O 2 and keypad potentiometer）（＊1）	00	00	00	\times	\times
00 （single）， 01 （auxiliary frequency input via O and OI terminals）（nonreversible）， 02 （auxiliary frequency input via O and Ol terminals）（reversible）， 03 （disabling O 2 terminal）	03	03	03	\times	\times
0.00 to 99．99， 100.0 to $400.0(\mathrm{~Hz})$	0.00	0.00	0.00	\times	\bigcirc
0.00 to 99．99， 100.0 to $400.0(\mathrm{~Hz})$	0.00	0.00	0.00	\times	\bigcirc

A013	O－L input active range start voltabe

A014 \quad O－L input active range end voltabe
A015 O－L input active range start frequency selection A016 External frequency filter time constant
A017 Easy sequence function selection

\section*{| A019 | Multispeed operation selection |
| :--- | :--- |
| A020 | Multispeed frequency setting |}

Multispeed frequency setting，2nd motor
Multispeed frequency setting，3rd motor
Multispeed $1-15$ setting
Jog frequency setting
Jog stop mode

Torque boost method selection
A241 Torque boost method selection，2nd motor
A042 Manual torque boost value

A242 \quad Manual torque boost value，2nd motor

A342	Manual torque boost value，3rd motor

A043	Manual torque boost frequency adjustment
A243	Manual torque boost frequency adjustment，2nd motor
A343	Manal to

V／F characteristic curve selection，2nd motor
V／F characteristic curve selection，3rd motor 45 V / f gain setting

A046 | Voltage compensation gain setting for automatic torque boost．1st motor |
| :--- | :--- | A246 Voltage compensation gain setting for automatic torque boost，2nd motor A047 A247 \quad Slippage compensation gain setting for automatic torque boost，2nd motor A051 DC braking enable

DC braking frequency setting
DC braking wait time
DC braking force during deceleration DC braking time for deceleration
DC braking／edge or level detection for［DB］input DC braking force for starting
A058 DC braking time for starting

DC braking carrier frequency setting
Frequency upper limit setting
A261 \quad Frequency upper limit setting，2nd motor
A062 Frequency lower limit setting
62 Frequency lower limit setting，2nd motor Jump（center）frequency setting 1
Jump（hysteresis）frequency width setting 1
Jump（center）frequency setting 2
Jump（hysteresis）frequency width setting 2
Jump（center）frequency setting 3
Jump（hysteresis）frequency width setting 3
Acceleration stop time frequency setting
Acceleration stop time frequency setting
PID function enable
PID proportional gain
PID integral time constant
PID derivative gain
PV scale conversion
PV source setting
Output of inverted PID deviation
PID variation range
$\mid \dot{U} \wedge \forall$
ant

AVR function select
AVR voltage select
Operation mode selection

A086	Energy saving mode tuning
A092	Acceleration（2）time

A292	Acceleration（2）time setting，2nd motor

| A392 | Acceleration（2）time setting，3rd motor |
| :--- | :--- | :--- |

© A093 Deceleration（2）time setting

A293 Deceleration（2）time setting，2nd motor
A393 \quad Deceleration（2）time setting，3rd motor

\％	A094	Select method to switch to Acc2／Dec2 profile
－	A294	Select method to switch to Acc2／Dec2，2nd motor
\％	A095	Acc1 to Acc2 frequency transition point
$\stackrel{\square}{8}$	A295	Acc1 to Acc2 frequency transition point，2nd motor
\sum^{0}	A096	Dec1 to Dec2 frequency transition point
은	A296	Dec1 to Dec2 frequency transition point，2nd motor
\％	A097	Acceleration curve selection
\bigcirc	A098	Deceleration curve selection
	A101	OI－L input active range start frequency
就氝	A102	OI－L input active range end frequency
发言	A103	OI－L input active range start current
葉	A104	OI－L input active range end current

[$\mathrm{O}=$ Allowed $\times=$ Not permitted]

Code		Function Name	Monitored data or setting	Default Setting				Changeduring operation(allowed or not)	
		-FE(CE)		-FU(UL)	-F(JP)				
	A105		OI-L input start frequency enable	00 (external start frequency), 1 (0 Hz)	00	00	00	\times	\bigcirc
	A111	O2-L input active range start frequency	-400. to -100., -99.9 to 0.00 to $99.99,100.0$ to $400.0(\mathrm{~Hz})$	0.00	0.00	0.00	\times	\bigcirc	
	A112	O2-L input active range end frequency	-400. to -100., -99.9 to 0.00 to $99.99,100.0$ to 400.0 (Hz)	0.00	0.00	0.00	\times	\bigcirc	
	A113	O2-L input active range start voltage	-100. to 02 end-frequency rate (\%)	-100.	-100.	-100.	\times	\bigcirc	
	A114	O2-L input active range end voltage	"02 start-frequency rate" to 100. (\%)	100.	100.	100.	\times	\bigcirc	
	A131	Acceleration curve constants setting	01 (smallest swelling) to 10 (largest swelling)	02	02	02	\times	\bigcirc	
	A132	Deceleration curve constants setting	01 (smallest swelling) to 10 (largest swelling)	02	02	02	\times	\bigcirc	
	A141	Operation-target frequency selection 1	00 (digital operator), 01 (keypad potentiometer), 02 (input via O), 03 (input via OI), 04 (external communication), 05 (option 1), 06 (option 2), 07 (pulse-string frequency input)	02	02	02	\times	\bigcirc	
	A142	Operation-target frequency selection 2	00 (digital operator), 01 (keypad potentiometer), 02 (input via O), 03 (input via OI), 04 (external communication), 05 (option 1), 06 (option 2), 07 (pulse-string frequency input)	03	03	03	\times	\bigcirc	
	A143	Operator selection	00 (addition: A141 + A142), 01 (subtraction: A141-A142), 02 (multiplication: A141 x A142)	00	00	00	\times	\bigcirc	
	A145	Frequency to be added	0.00 to 99.99, 100.0 to 400.0 (Hz)	0.00	0.00	0.00	\times	\bigcirc	
	A146	Sign of the frequency to be added	00 (frequency command + A145), 01 (frequency command - A145)	00	00	00	\times	\bigcirc	
	A150	EL-S-curve acceleration ratio 1	0. to 50. (\%)	25.	25.	25.	\times	\times	
	A151	EL-S-curve acceleration ratio 2	0. to 50. (\%)	25.	25.	25.	\times	\times	
	A152	EL-S-curve deceleration ratio 1	0. to 50. (\%)	25.	25.	25.	\times	\times	
	A153	EL-S-curve deceleration ratio 2	0. to 50. (\%)	25.	25.	25.	\times	\times	

B GROUP: FINE TUNING FUNCTIONS
[$O=$ Allowed $\times=$ Not permitted]

Code		Function Name	Monitored data or setting	Default Setting				$\begin{gathered} \text { Change } \\ \text { dutino oparation } \\ \text { (alloved or or not) } \end{gathered}$	
		-FE(CE)		FU(UL)	-F(JP)				
	b001		Selection of restart mode	00 (tripping), 01 (starting with 0 Hz), 02 (starting with matching frequency), 03 (tripping after deceleration and stopping with matching frequency), 04 (restarting with active matching frequency)	00	00	00	\times	O
	b002	Allowable under-voltage power failure time	0.3 to 25.0 ((s)	1.0	1.0	1.0	\times	\bigcirc	
	b003	Retry wait time before motor restart	0.3 to 100.0 (s)	1.0	1.0	1.0	\times	\bigcirc	
	b00	Instantaneous power failurelunder-voltage trip alarm enable	00 (disabing), 01 (enabling), 02 (disabling during stopping and decelerating to stop)	00	00	00	\times	\bigcirc	
	6005	Number of restarts on power failurelunder-voltage tip events	00 (16 times), 01 (unlimited)	00	00	00	\times	\bigcirc	
	006	Phase loss detection enable	00 (disabing), 01 (enabling)	00	00	00	\times	\bigcirc	
	b007	Restart frequency threshold	0.00 to 99.99, 100.0 to 400.0 (Hz)	0.00	0.00	0.00	\times	O	
	b008	Selection of retry after tripping	00 (tripping), 01 (starting with 0 Hz), 02 (starting with matching frequency), 03 (tripping after deceleration and stopping with matching frequency), 04 (restarting with active matching frequency)	00	00	00	\times	\bigcirc	
	b009	Selection of retry after undervoltage	00 (16 times), 01 (unlimited)	00	00	00	\times	\bigcirc	
	6010	Selection of retry count after overvoltage or overcurrent	1 to 3 (times)	3	3	3	\times	\bigcirc	
	01	Retry wait time after tripping	0.3 to 100.0 (s)	1.0	1.0	1.0	\times	\bigcirc	
	b012		$0.20 \times$ "rated current" to $1.00 \times$ "rated current" (A)	Rated current of inverterx $1 . .0$			\times	\bigcirc	
	b212		$0.20 \times$ "rated current" to $1.00 \times$ "rated current" (A)				\times	\bigcirc	
	b312		$0.20 \times$ "rated current" to $1.00 \times$ "rated current" (A)				\times	\bigcirc	
	b013	Electronic thermal characteristic	00 (reduced-torque characteristic), 01 (constant-torque characteristic), 02 (rree setting)	01	01	00	\times	\bigcirc	
	b213	Electronic thermal characteristic, 2nd motor	00 (reduced-torque characteristic), 01 (constant-torque characteristic), 02 (rree setting)	01	01	00	\times	\bigcirc	
	b313	Electronic thermal characteristic, 3rd motor	00 (reduced-torque characteristic), 01 (constant-torque characteristic), 02 (rree setting)	01	01	00	\times	\bigcirc	
	b015	Free-setting electronic thermal frequency (1)	0. to 400. (Hz)	0.	0	0.	\times	\bigcirc	
	b016	Free-setting electronic thermal current (1)	0.00 to rated current (A)	0.0	0.0	0.0	\times	\bigcirc	
	b017	Free-setting electronic thermal frequency (2)	0. to 400. (Hz)	0.	0.	0.	\times	\bigcirc	
	b018	Free-setting electronic thermal current (2)	0.00 to rated current (A)	0.0	0.0	0.0	\times	\bigcirc	
	b019	Free-setting electronic thermal frequency (3)	0. to 400. (Hz)	0.	0.	0.	\times	\bigcirc	
	b020	Free-setting electronic thermal current (3)	0.00 to rated current (A)	0.0	0.0	0.0	\times	O	
	b021	Overload restriction operation mode	00 (disabling), 01 (enabling during acceleration and deceleration), 02 (enabling during constant speed), 03 (enabling during acceleration and deceleration (increasing the speed during regeneration))	01	01	01	\times	\bigcirc	
	b022	Overload restriction setting	$0.20 \times$ "rated current" to $1.00 \times$ "rated current" (A)	Rated current $\times 1.50$			\times	\bigcirc	
	b023	Deceleration rate at overload restriction	0.10 to 30.00 (s)	1.00	1.00	1.00	\times	\bigcirc	
	b024	Overload restriction operation mode (2)	00 (disabling), 01 (enabling during acceleration and deceleration), 02 (enabling during constant speed), 03 (enabling during acceleration and deceleration (increasing the speed during regeneration))	01	01	01	\times	\bigcirc	
	b025	Overload restriction setting (2)	$0.20 \times$ "rated current" to $2.00 \times$ "rated current" (A)	Rated current $\times 1.50$			\times	\bigcirc	
	b026	Deceleration rate at overload restriction (2)	0.10 to 30.00 (s)	1.00	1.00	1.00	\times	\bigcirc	
	b027	Overcurrent suppression enable	00 (disabling), 01 (enabling)	01	01	01	\times	\bigcirc	
	b02	Active frequency matching, scan start frequency	$0.20 \times$ "rated current" to $2.00 \times$ "rated current" (A)	Rated curento finvertex 1.0			\times	\bigcirc	
	bo	Active frequency matching, scan-time constant	0.10 to 30.00 (s)	0.50	0.50	0.50	\times	\bigcirc	
	b030	Active frequency matching, restart frequency select	00 (frequency at the last shutoff), 01 (maximum frequency), 02 (set frequency)	00	00	00	\times	\bigcirc	
	8 b031	Software lock mode selection	00 (disabling change of data other than "b031" when SFT is on), 01 (disabling change of data other than "b031" and frequency settings when SFT is on), 02 (disabling change of data other than "b031"), 03 (disabling change of data other than "b031" and requency settings), 10 (enabling data changes during operation)	01	01	01	\times	\bigcirc	
	b034	RUN/ power-on warning time	0. to 9999. (0 to 99990), 1000 to 6553 (10000 to 655300) (hr)	0.	0.	0.	\times	\bigcirc	
¢	b035	Rotational direction restriction		00	00	00	\times	\times	
	b036	Reduced voltage start selection	0 (minimum reduced volage start time) to 255 (maximum rediced voltage start time)	06	06	06	\times	\bigcirc	
	b03	Function code display restriction	00 (tull display), 01 (tunction-specific display), 02 (user setting), 03 (data comparison display), 04 (aasic display)	04	04	04	\times	\bigcirc	
	b038	Initial-screen selection	00 (screend displayed when the STR key was pressed last), 01 (1000), 02 (d002), 03 (d003), 04 (1007), 05 (F001)	01	01	01	\times	\bigcirc	
	b039	Automatic user-parameter setting function enable	00 (disabing), 01 (enabling)	00	00	00	\times	\bigcirc	
	b040	Torque limit selection	00 (quadran-specific setting), 01 (switching by termina), 02 (analog input), 03 (option 1), 04 (option 2)	00	00	00	\times	\bigcirc	
	b041	Torque limit(1) (Forward-driving in 4 -quadrant mode)	0. to 200. (\%), no (disabling torque limitation)	150.	150.	150.	\times	0	
	b042	Torque linit(2) (Reverse-regenerating in 4-quadrant mode)	0. to 200. (\%), no (disabling torque limitation)	150.	150.	150.	\times	\bigcirc	
	b043	Torque limit(3) (Reverse-driving in 4-quadrant mode)	0. to 200. (\%), no (disabling torque limitation)	150.	150.	150.	\times	\bigcirc	
	b044	Torque limit(4) (Forward-regenerating in 4-quadrant mode)	0. to 200. (\%), no (disabling torque limitation)	150.	150.	150.	\times	\bigcirc	
	b045	Torque limit LADSTOP enable	00 (disabling), 01 (enabling)	00	00	00	\times	\bigcirc	
	b046	Reverse RUN protection enable	00 (disabing), 01 (enabling)	00	00	00	\times	\bigcirc	
	b050	Controlled deceleration and stop on power loss	00 (disabling), 01 (enabling)	00	00	00	\times	\times	
	b051	DC bus voltage trigger level during power loss	0.0 to 999.9, 1000. (V)	220.0440 .0	220.0440 .0	220.0440.0	\times	\times	
	b052	Over-voltage threshold during power loss	0.0 to 999.9, 1000. (V)	380.0.720.0	330.0720.0	30,0.720.0	\times	\times	
	b053	Deceleration time setting during power loss	0.01 to 99.99, 100.0 to 999.9, 1000. to 3600. (s)	1.00	1.00	1.00	\times	\times	
	b054	Initial output trequency decrease during power loss	0.00 to 10.00 (Hz)	0.00	0.00	0.00	\times	\times	
	b055	Proporional gain setting for nonstop operation at power loss	0.00 to 2.55	0.20	0.20	0.20	\bigcirc	\bigcirc	

[$\mathrm{O}=$ Allowed $\mathrm{X}=$ Not permitted]

| b056 | Integral time setting for nonstop operation at power loss |
| :---: | :--- | :--- |
| b060 | |

0.0 to $9.999 / 10.00$ to 65.55
0. to 100. (lower limit : b061 + b062*2) (\%)
0. to 100. (lower limit : b060-b062*2) (\%)
0. to 10. (lower limit : b061-b062 /2) (\%)
0. to 100. (lower limit : b064 + b066*2) (\%)
0. to 100. (lower limit : b063-b066*2) (\%)
0. to 10. (lower limit : b063 - b064 / 2) (\%)
-100. to 100. (lower limit : b067 + b068*2) (\%)
-100. to 100. (lower limit : b066-b068*2) (\%)
0. to 10. (lower limit : b066-b067 / 2) (\%)

0 to 100 (\%) or "no" (ignore)
0 to 100 (\%) or "no" (ignore)
0 to 100 (\%) or "no" (ignore)
Clearance by setting "01" and pressing the STR key

1. to 1000 .
0.10 to 9.99 (Hz)
0.5 to $15.0(\mathrm{kHz})$ (subject to derating)

00 (clearing the trip history), 01 (initializing the data), 02 (clearing the trip history and initiaizing the data) 00 (Japan), 01 (EU), 02 (U.S.A.)
0.1 to 99.0

00 (enabling), 01 (disabling), 02 (disabling only the function to stop)
00 (starting with 0 Hz), 01 (starting with matching frequency), 02 (starting with active matching frequency)
00 : invalid, 01: valid
0.0 to 100.0 (\%)

00 (deceleration until stop), 01 (free-run stop)
00 (always operating the fan), 01 (operating the fan only during inverter operation
[including 5 minutes after power-on and power-off])
00 (disabling), 01 (enabling [disabling while the motor is topped]), 02 (enabling [enabling also while the motor is topped) 330 to 380,660 to $760(\mathrm{~V})$
00 (disabling the thermistor), 01 (enabling the thermistor with PTC), 02 (enabling the thermistor with NTC) 0. to 9999. (Ω)
0. to "free-setting V/f frequency (2)" (Hz)
0.0 to 800.0 (V)
0. to "free-setting V/f frequency (3)" (Hz)
0.0 to 800.0 (V)

0 . to "free-setting V/f frequency (4)" (Hz)
0.0 to 800.0 (V)

0 . to "free-setting V/f frequency (5)" (Hz)
0.0 to 800.0 (V)
0. to "free-setting V/f frequency (6)" (Hz)
0.0 to 800.0 (V)

0 . to "free-setting V/ffrequency (7)" (Hz)
0.0 to 800.0 (V)
0.0 to $400.0(\mathrm{~Hz})$
0.0 to 800.0 (V)

00 (disabling), 01 (enabling)
0.00 to 5.00 (s)
0.00 to 5.00 (s)
0.00 to 5.00 (s)
0.00 to 5.00 (s)
0.00 to $99.99,100.0$ to $400.0(\mathrm{~Hz})$
0.0 to $2.00 \times$ "rated current"
0.00 to $99.99,100.0$ to $400.0(\mathrm{~Hz})$

00 (disabling the restraint), 01 (decelerating and stagnating), 02 (enabling acceleration)
330 to $390(\mathrm{~V})(200 \mathrm{~V}$ class model), 660 to $780(\mathrm{~V})(400 \mathrm{~V}$ class model)
0.10 to 30.00 (s)
0.00 to 2.55
0.000 to 9.999 / 10.00 to 63.53 (s)

0.100	0.100	0.100

Seting during operation (allowed or not)	$\begin{aligned} & \text { Change } \\ & \text { during operation } \\ & \text { (allowed or not) } \end{aligned}$
\bigcirc	\bigcirc
\times	\bigcirc
\times	\bigcirc
\times	\bigcirc
\bigcirc	\bigcirc
\times	\times
\times	\bigcirc
\times	\times
\times	\times
\times	\times
\bigcirc	\bigcirc
\times	\bigcirc
\times	\bigcirc
\times	\times
\times	\bigcirc
\times	\times
\times	\bigcirc
\bigcirc	\bigcirc
\bigcirc	\bigcirc

OC GROUP: INTELLIGENT TERMINAL FUNCTIONS

[$\mathrm{O}=$ Allowed $\mathrm{X}=$ Not permitted]

Code		Function Name	Monitored data or setting	Default Setting			Setting during operation (allowed or not)	Changeduring operation(allowed or not)	
		-FE(CE)		-FU(UL)	-F(JP)				
	C001		Terminal [1] function (*2)	01 (RV: Reverse RUN), 02 (CF1: Multispeed 1 setting), 03 (CF2: Multispeed 2 setting), 04 (CF3: Multispeed 3 setting), 05 (CF4: Multispeed 4 setting), 06 (JG: Jogging), 07 (DB: external DC braking), 08 (SET: Set 2nd motor data), 09 (2CH: 2-stage acceleration/deceleration), 11 (FRS: free-run stop), 12 (EXT: external trip), 13 (USP: unattended start protection), 14: (CS: commercial power source enable), 15 (SFT: software lock), 16 (AT: analog input voltage/current select), 17 (SET3: 3rd motor control), 18 (RS: reset), 20 (STA: starting by 3 -wire input), 21 (STP: stopping by 3 -wire input), 22 (F/R: forward/reverse switthing by 3-wire input), 23 (PID: PID disable), 24 (PIDC: PID reset), 26 (CAS: control gain setting), 27 (UP: remote control UP function), 28 (DWN: remote control DOWN function), 29 (DWN: remote control data clearing), 31 (OPE: forcible operation), 32 (SF1: multispeed bit 1), 33 (SF2: multispeed bit 2), 34 (SF3: multispeed bit 3), 35 (SF4: multispeed bit 4), 36 (SF5: multispeed bit 5), 37 (SF6: multispeed bit 6), 38 (SF7: multispeed bit 7), 39 (OLR: overload restriction selection), 40 (TL: torque limit enable), 41 (TRQ1: torque limit selection bit 1), 42 (TRQ2: torque limit selection bit 2), 43 (PPI: P/PI mode selection), 44 (BOK: braking confirmation), 45 (ORT: orientation), 46 (LAC: LAD cancellation), 47 (PCLR: clearance of position deviation), 48 (STAT: pulse train position command input enable), 50 (ADD: trigger for frequency addition [A145]), 51 (F-TM: forcible-terminal operation), 52 (ATR: permission of torque command input), 53 (KHC: cumulative power clearance), 54 (SON: servo-on), 55 (FOC: pre-excitation), 56 (MI1: general-purpose input 1), 57 (MI2: general-purpose input 2), 58 (MI3: general-purpose input 3), 59 (MI4: general-purpose input 4), 60 (MI5: general-purpose input 5), 61 (MI6: general-purpose input 6), 62 (MI7: general-purpose input 7), 63 (MI8: general-purpose input 8), 65 (AHD: analog command holding), 66 (CP1: multistage position settings selection 1), 67 (CP2: multistage position settings selection 2), 68 (CP3: multistage position settings selection 3), 69 (ORL: Zero-return limit function), 70 (ORG: Zero-return trigger function), 71 (FOT: forward drive stop), 72 (ROT: reverse drive stop), 73 (SPD: speed / position switching), 74 (PCNT: pulse counter), 75 (PCC: pulse counter clear), no (NO: no assignment)	18(RS)	18(RS)	18(RS)	\times	\bigcirc
	C002	Terminal [2] function	16(AT)		16(AT)	16(AT)	\times	\bigcirc	
	C003	Terminal [3] function (*2)	06(JG)		06(JG)	06(JG)	\times	\bigcirc	
	C004	Terminal [4] function	11(FRS)		11(FRS)	11(FRS)	\times	\bigcirc	
	C005	Terminal [5] function	09(2CH)		09(2CH)	09(2CH)	\times	\bigcirc	
	C006	Terminal [6] function	03(CF2)		13(USP)	03(CF2)	\times	\bigcirc	
	C007	Terminal [7] function	02(CF1)		02(CF1)	02(CF1)	\times	\bigcirc	
	C008	Terminal [8] function	01(RV)		01(RV)	01(RV)	\times	\bigcirc	

$00(\mathrm{NO}) / 01(\mathrm{NC})$ $00(\mathrm{NO}) / 01(\mathrm{NC})$
$00(\mathrm{NO}) / 01(\mathrm{NC})$
00(NO) / $101(\mathrm{NC})$
$00(\mathrm{NO}) / 01(\mathrm{NC})$
$00(\mathrm{NO}) / 01(\mathrm{NC})$
$00(\mathrm{NO}) / 01(\mathrm{NC})$
$00(\mathrm{NO}) / 01(\mathrm{NC})$

00(NO) / 01(NC)

00 (RUN: running), 01 (FA1: constant-speed reached), 02 (FA2: set frequency overreached), 03 (OL: overload notice advance signal (1)), 04 (OD: output deviation for PID control), 05 (AL: alarm signal), 06 (FA3: set frequency reached), 07 (OTQ: over-torque), 08 (IP: instantaneous power failure), 09 (UV: undervoltage), 10 (TRQ: torque limited), 11 (RNT: operation time over), 12 (ONT: plug-in time over), 13 (THM: thermal alarm signal), 19 (BRK: brake release), 20 (BER: braking error), 21 (ZS: 0 Hz detection signal), 22 (DSE: speed deviation maximum), 23 (POK: positioning completed), 24 (FA4: set frequency
overreached 2), 25 (FA5: set frequency reached 2), 26 (OL2: overload notice advance signal (2)), 27 (Odc: overreached 2), 25 (FA5: set frequency reached 2), 26 (OL 1 : overload notice advance signal (2), 27 (Ode
Analog 0 disconnection detection), 28 (OIDc: Analog Ol disconnection detection), 29 (O2Dc: Analog O2 Analog O disconnection detection), 28 (OIDc: Analog Ol disconnection detection), 29 (O2Dc: Analog O2
disconnection detection), 31 (FBV: PID feedback comparison), 32 (NDc: communication line disconnection) 33 (LOG1: logical operation result 1), 34 (LOG2: logical operation result 2), 35 (LOG3: logical operation result 3), 36 (LOG4: logical operation result 4), 37 (LOG5: logical operation result 5), 38 (LOG6: logical operation result 6), 39 (WAC: capacitor life warning), 40 (WAF: cooling-fan speed drop), 41 (FR: starting contact signal), 42 (OHF: heat sink overheat warning), 43 (LOC: low-current indication signal), 44 (M01: general-purpose output 1), 45 (M02: general-purpose output 2), 46 (M03: general-purpose output 3), 47
(M04: general-purpose output 4), 48 (M05: general-purpose output 5), 49 (M06: general-purpose output 6), (M04: general-purpose output 4), 48 (M05: general-purpose output 5), 49 (M06: general-purpose output 6),
50 (IRDY: inverter ready), 51 (FWR: forward rotation), 52 (RVR: reverse rotation), 53 (MJA: major failure), 50 (IRDY: inverter ready), 51 (FWR: forward rotation), 52 (RVR: reverse rotation), 53 (MJA: major failure), (When alarm code output is selected for "C062", functions "AC0" to "AC2" or "ACO" to "AC3" [ACn: alarm code output] are forcibly assigned to intelligent output terminals 11 to 13 or 11 to 14 , respectively.)
00 (output frequency), 01 (output current), 02 (output torque), 03 (digital output frequency), 04 (output voltage), 05 (input power), 06 (electronic thermal overload), 07 (LAD frequency), 08 (digital current monitoring), 09 (motor temperature), 10 (heat sink temperature), 12 (general-purpose output YAO)

00 (output frequency), 01 (output current), 02 (output torque), 04 (output voltage), 05 (input power), 06
(electronic thermal overload), 07 (LAD frequency), 09 (motor temperature), 10 (heat sink temperature), (output torque [signed value]), 13 (general-purpose output YA1)

00 (output frequency), 01 (output current), 02 (output torque), 04 (output voltage), 05 (input power), 06 (electronic thermal overload), 07 (LAD frequency), 09 (motor temperature), 10 (heat sink temperature), 14 (general-purpose output YA2)
$0.20 \times$ "rated current" to $2.00 \times$ "rated current" (A)
(Current with digital current monitor output at $1,440 \mathrm{~Hz}$)
00(NO) / 01(NC)
00(NO) / 01(NC)
00(NO) / 01(NC)
00(NO) / 01(NC)
$00(\mathrm{NO}) / 01(\mathrm{NC})$
00(NO) / 01(NC)
00 (output during acceleration/deceleration and constant-speed operation),
01 (output only during constant-speed operation)
0.0 to $2.00 \times$ "rated current" (A)

00 (output during acceleration/deceleration and constant-speed operation),
01 (output only during constant-speed operation)
0.0 to $2.00 \times$ "rated current" (A)
0.00 to $99.99,100.0$ to $400.0(\mathrm{~Hz})$
0.00 to $99.99,100.0$ to $400.0(\mathrm{~Hz})$
0.0 to 100.0 (\%)
0.00 to $99.99,100.0$ to $400.0(\mathrm{~Hz})$
0.00 to $99.99,100.0$ to $400.0(\mathrm{~Hz})$
0.0 to 100.0 (\%)
0.0 to 100.0 (\%)
0. to 200. (\%)
0. to 200. (\%)
0. to 200. (\%)
0. to 200. (\%)
0. to 100. (\%)

00(Disabled) / 01(3-bit) / 02(4-bit)
0.00 to $99.99,100.0(\mathrm{~Hz})$
0. to $200.0\left({ }^{\circ} \mathrm{C}\right)$

02 (loopback test), 03 (2,400 bps), 04 (4,800 bps), 05 ($9,600 \mathrm{bps}$), 06 ($19,200 \mathrm{bps}$) 1. to 32.

7 (7 bits), 8 (8 bits)
00 (no parity), 01 (even parity), 02 (odd parity)
1 (1 bit), 2 (2 bits)
00 (tripping), 01 (tripping after decelerating and stopping the motor), 02 (ignoring errors),
03 (stopping the motor after free-running), 04 (decelerating and stopping the motor)
0.00 to 99.99 (s)
0. to 1000. (ms)

00(ASCII), 01(Modbus-RTU)
0. to 9999., 1000 to 6553(10000 to 65530)
0. to 9999., 1000 to $6553(10000 \sim 65530)$
0. to 9999., 1000 to $6553(10000 \sim 65530)$
0.0 to 999.9, 1000.

		\times		
(Do not change this parameter, which is intended for factory adjustment.)	00	00	00	\times
00 (not storing the frequency data), 01 (storing the frequency data)	00	00	00	\times
00 (resetting the trip when RS is on), 01 (resetting the trip when RS is off), 02 (enabling resetting only upon tripping [resetting when RS is on])	00	00	00	\bigcirc
00 (starting with 0 Hz), 01 (starting with matching frequency), 02 (restarting with active matching frequency)	00	00	00	\times
50. to 200. (\%)	100.	100.	100.	\bigcirc
50. to $200 .(\%)$	100.	100.	100.	\bigcirc

[$\mathrm{O}=$ Allowed $\times=$ Not permitted]

C107	AMI gain adjustment
C109	AM bias adjustment
C110	AMI bias adjustment
C111	Overload setting (2)
C121	O input zero calibration
C122	Ol input zero calibration
C123	O2 input zero calibration
C130	Output 11 on-delay time
C131	Output 11 off-delay time
C132	Output 12 on-delay time
C133	Output 12 off-delay time
C134	Output 13 on-delay time
C135	Output 13 off-delay time
C136	Output 14 on-delay time
C137	Output 14 off-delay time
C138	Output 15 on-delay time
C139	Output 15 off-delay time
C140	Output RY on-delay time
C141	Output RY off-delay time
C142	Logical output signal 1 selection 1
C143	Logical output signal 1 selection 2
C144	Logical output signal 1 operator selection
C145	Logical output signal 2 selection 1
C146	Logical output signal 2 selection 2
C147	Logical output signal 2 operator selection
C148	Logical output signal 3 selection 1
C149	Logical output signal 3 selection 2
C150	Logical output signal 3 operator selection
C151	Logical output signal 4 selection 1
C152	Logical output signal 4 selection 2
C153	Logical output signal 4 operator selection
C154	Logical output signal 5 selection 1
C155	Logical output signal 5 selection 2
C156	Logical output signal 5 operator selection
C157	Logical output signal 6 selection 1
C158	Logical output signal 6 selection 2
C159	Logical output signal 6 operator selection
C160	Input terminal response time setting 1
C161	Input terminal response time setting 2
C162	Input terminal response time setting 3
C163	Input terminal response time setting 4
C164	Input terminal response time setting 5
C165	Input terminal response time setting 6
C166	Input terminal response time setting 7
C167	Input terminal response time setting 8
C168	Input terminal response time setting FW
C169	Multistage speed/position determination tim

	50. to 200. (\%)
	0. to 100. (\%)
	0. to 100. (\%)
	0.0 to $2.00 \times$ "rated current" (A)
	0 . to 9999., 1000 to 6553 (10000 to 65530)
	0. to 9999., 1000 to 6553 (10000 to 65530)
	0 . to 9999., 1000 to 6553 (10000 to 65530)
	0.0 to 100.0 (s)
	Same as the settings of C021 to C026 (except those of LOG1 to LOG6)
	Same as the settings of C021 to C026 (except those of LOG1 to LOG6)
	00 (AND), 01 (OR), 02 (XOR)
	Same as the settings of C021 to C026 (except those of LOG1 to LOG6)
	Same as the settings of C021 to C026 (except those of LOG1 to LOG6)
	00 (AND), 01 (OR), 02 (XOR)
	Same as the settings of C021 to C026 (except those of LOG1 to LOG6)
	Same as the settings of C021 to C026 (except those of LOG1 to LOG6)
	00 (AND), 01 (OR), 02 (XOR)
	Same as the settings of C021 to C026 (except those of LOG1 to LOG6)
	Same as the settings of C021 to C026 (except those of LOG1 to LOG6)
	00 (AND), 01 (OR), 02 (XOR)
	Same as the settings of C021 to C026 (except those of LOG1 to LOG6)
	Same as the settings of C021 to C026 (except those of LOG1 to LOG6)
	00 (AND), 01 (OR), 02 (XOR)
	Same as the settings of C021 to C026 (except those of LOG1 to LOG6)
	Same as the settings of C021 to C026 (except those of LOG1 to LOG6)
	00 (AND), 01 (OR), 02 (XOR)
	0. to 200. ($\times 2 \mathrm{~ms}$)
	0. to 200. ($\times 2 \mathrm{~ms}$)
	0. to 200. ($\times 2 \mathrm{~ms}$)
	0. to 200. ($\times 2 \mathrm{~ms}$)
	0. to 200. ($\times 2 \mathrm{~ms}$)
	0. to 200. ($\times 2 \mathrm{~ms}$)
	0. to 200. ($\times 2 \mathrm{~ms}$)
	0. to 200. ($\times 2 \mathrm{~ms}$)
	0. to 200. ($\times 2 \mathrm{~ms}$)
	0. to 200. ($\times 10 \mathrm{~ms}$)

Default Setting			Setingduring operation(allowed or not)	during operation (allowed or not)
-FE(CE)	-FU(UL)	-F(JP)		
100.	100.	100.	\bigcirc	\bigcirc
0.	0.	0.	\bigcirc	\bigcirc
20.	20.	20.	\bigcirc	\bigcirc
Rated current of inverterx $1 . .0$			\times	\bigcirc
Factory set			\bigcirc	\bigcirc
			\bigcirc	\bigcirc
			\bigcirc	\bigcirc
0.0	0.0	0.0	\bigcirc	\bigcirc
0.0	0.0	0.0	\times	\bigcirc
0.0	0.0	0.0	\times	\bigcirc
0.0	0.0	0.0	\times	\bigcirc
0.0	0.0	0.0	\times	\bigcirc
0.0	0.0	0.0	\times	\bigcirc
0.0	0.0	0.0	\times	\bigcirc
0.0	0.0	0.0	\times	\bigcirc
0.0	0.0	0.0	\times	\bigcirc
0.0	0.0	0.0	\times	\bigcirc
0.0	0.0	0.0	\times	\bigcirc
0.0	0.0	0.0	\times	\bigcirc
00	00	00	\times	\bigcirc
00	00	00	\times	\bigcirc
00	00	00	\times	\bigcirc
00	00	00	\times	\bigcirc
00	00	00	\times	\bigcirc
00	00	00	\times	\bigcirc
00	00	00	\times	\bigcirc
00	00	00	\times	\bigcirc
00	00	00	\times	\bigcirc
00	00	00	\times	\bigcirc
00	00	00	\times	\bigcirc
00	00	00	\times	\bigcirc
00	00	00	\times	\bigcirc
00	00	00	\times	\bigcirc
00	00	00	\times	\bigcirc
00	00	00	\times	\bigcirc
00	00	00	\times	\bigcirc
00	00	00	\times	\bigcirc
1	1	1	\times	\bigcirc
1	1	1	\times	\bigcirc
1	1	1	\times	\bigcirc
1	1	1	\times	\bigcirc
1	1	1	\times	\bigcirc
1	1	1	\times	\bigcirc
1	1	1	\times	\bigcirc
1	1	1	\times	\bigcirc
1	1	1	\times	\bigcirc
0	0	0	\times	\bigcirc

H GROUP: MOTOR CONSTANTS FUNCTIONS

[$\mathrm{O}=$ Allowed $\mathrm{X}=$ Not permitted]

Code		Function Name	Monitored data or setting	Default Setting			Settingduring operation(allowed or not)	Changeduring operation(allowed or not)	
		-FE(CE)		-FU(UL)	-F(JP)				
	H034		Auto constant J, 1st motor	0.001 to 9.999, 10.00 to $99.99,100.0$ to $999.9,1000$. to 9999.	Depending on motor capacity			\times	\times
	H234	Auto constant $\mathrm{J}, 2$ 2nd motor	0.001 to 9.999, 10.00 to $99.99,100.0$ to $999.9,1000$. to 9999.	\times				\times	
000000000	H050	Pl proportional gain for 1st motor	0.0 to 999.9, 1000.	100.0	100.0	100.0	\bigcirc	\bigcirc	
	H250	PI proportional gain for 2nd motor	0.0 to 999.9, 1000.	100.0	100.0	100.0	\bigcirc	\bigcirc	
	H051	Pl integral gain for 1st motor	0.0 to 999.9, 1000.	100.0	100.0	100.0	\bigcirc	\bigcirc	
	H251	Pl integral gain for 2nd motor	0.0 to 999.9, 1000.	100.0	100.0	100.0	\bigcirc	\bigcirc	
	H052	P proportional gain setting for 1st motor	0.01 to 10.00	1.00	1.00	1.00	\bigcirc	\bigcirc	
	H252	P proportional gain setting for 2nd motor	0.01 to 10.00	1.00	1.00	1.00	\bigcirc	\bigcirc	
	H060	Zero LV Imit for 1st motor	0.0 to 100.0	100.	100.	100.	\bigcirc	\bigcirc	
	H260	Zero LV Imit for 2nd motor	0.0 to 100.0	100.	100.	100.	\bigcirc	\bigcirc	
	H061	Zero LV starting boost current for 1st motor	0. to 50. (\%)	50.	50.	50.	\bigcirc	\bigcirc	
	H261	Zero LV starting boost current for 2nd motor	0. to 50. (\%)	50.	50.	50.	\bigcirc	\bigcirc	
	H070	Terminal selection PI proportional gain setting	0.0 to 999.9, 1000.	100.0	100.0	100.0	\bigcirc	\bigcirc	
	H071	Terminal selection Pl integral gain setting	0.0 to 999.9, 1000.	100.0	100.0	100.0	\bigcirc	\bigcirc	
	H072	Terminal selection P proportional gain setting	0.00 to 10.00	1.00	1.00	1.00	\bigcirc	\bigcirc	
	H073	Gain switching time	0. to 9999. (ms)	100.	100.	100.	\bigcirc	\bigcirc	

P GROUP: EXPANSION CARD FUNCTIONS

Code		Function Name	Monitored data or setting	Default Setting			Setingduring operation(allowed or not)	Change during operation (allowed or not)	
		-FE(CE)		-FU(UL)	-F(JP)				
	P001		Operation mode on expansion card 1 error	00 (tripping), 01 (continuing operation)	00	00	00	-	\bigcirc
	P002	Operation mode on expansion card 2 error	00 (tripping), 01 (continuing operation)	00	00	00	\times	\bigcirc	
	P011	Encoder pulse-per-revolution (PPR) setting	128. to 9999., 1000 to 6500 (10000 to 65000) (pulses)	1024	1024	1024	\times	\times	
	P012	Control pulse setting	00 (ASR), 01 (APR), 02 (APR2), 03 (HAPR)	00	00	00	\times	\times	
	P013	Pulse input mode setting	00 (mode 0), 01 (mode 1), 02 (mode 2)	00	00	00	\times	\times	
	P014	Home search stop position setting	0. to 4095.	0.	0.	0.	\times	\bigcirc	
	P015	Home search speed setting	"start frequency" to "maximum frequency" (up to 120.0) (Hz)	5.00	5.00	5.00	\times	\bigcirc	
	P016	Home search direction setting	00 (forward), 01 (reverse)	00	00	00	\times	\times	
	P017	Home search completion range setting	0. to 9999., 1000 (10000) (pulses)	5.	5.	5.	\times	\bigcirc	
	P018	Home search completion delay time setting	0.00 to 9.99 (s)	0.00	0.00	0.00	\times	\bigcirc	
	P019	Electronic gear set position selection	00 (feedback side), 01 (commanding side)	00	00	00	\times	\bigcirc	
	P020	Electronic gear ratio numerator setting	0. to 9999.	1.	1.	1.	\times	\bigcirc	
	P021	Electronic gear ratio denominator setting	0. to 9999.	1.	1.	1.	\times	\times	
	P022	Feed-forward gain setting	0.00 to 99.99, 100.0 to 655.3	0.00	0.00	0.00	\times	\bigcirc	
	P023	Position loop gain setting	0.00 to 99.99, 100.0	0.50	0.50	0.50	\times	\bigcirc	
	P024	Position bias setting	-204 (-2048.) /-999. to 2048	0.	0.	0.	\times	\bigcirc	
	P025	Temperature compensation thermistor enable	00 (no compensation), 01 (compensation)	00	00	00	\times	\bigcirc	
	P026	Over-speed error detection level setting	0.0 to 150.0 (\%)	135.0	135.0	135.0	\times	\bigcirc	
	P027	Speed deviation error detection level setting	0.00 to $99.99,100.0$ to120.0 (Hz)	7.50	7.50	7.50	\times	\times	
	P028	Numerator of motor gear ratio	0. to 9999.	1.	1.	1.	\times	\bigcirc	
	P029	Denominator of motor gear ratio	0. to 9999.	1.	1.	1.	\times	\bigcirc	
	P031	Accel./decel. time input selection	00 (digital operator), 01 (option 1), 02 (option 2), 03 (easy sequence)	00	00	00	\times	\times	
	P032	Positioning command input selection	00 (digital operator), 01 (option 1), 02 (option 2)	00	00	00	\times	\bigcirc	
	P033	Torque command input selection	00 (O terminal), 01 (Ol terminal), 02 (O 2 terminal), 03 (digital operator)	00	00	00	\times	\times	
	P034	Torque command setting	0. to 200. (\%)	0.	0.	0.	\bigcirc	\bigcirc	
	P035	Polarity selection at the torque command input via O2 terminal	00 (as indicated by the sign), 01 (depending on the operation direction)	00	00	00	\times	\times	
	P036	Torque bias mode	00 (disabling the mode), 01 (digital operator), 02 (input via O 2 terminal)	00	00	00	\times	\times	
	P037	Torque bias value	-200. to +200. (\%)	0.	0.	0.	\bigcirc	\bigcirc	
	P038	Torque bias polarity selection	00 (as indicated by the sign), 01 (depending on the operation direction)	00	00	00	\times	\times	
	P039	Speed limit for torque-controlled operation (forward rotation)	0.00 to "maximum frequency" (Hz)	0.00	0.00	0.00	\bigcirc	\bigcirc	
	P040	Speed limit for torque-controlled operation (reverse rotation)	0.00 to "maximum frequency" (Hz)	0.00	0.00	0.00	\bigcirc	\bigcirc	
	P044	DeviceNet comm watchdog timer	0.00 to 99.99 (s)	1.00	1.00	1.00	\times	\times	
	P045	Inverter action on DeviceNet comm error	00 (tripping), 01 (tripping after decelerating and stopping the motor), 02 (ignoring errors), 03 (stopping the motor after free-running), 04 (decelerating and stopping the motor)	01	01	01	\times	\times	
	P046	DeviceNet polled I/O : Output instance number	20, 21, 100	21	21	21	\times	\times	
	P047	DeviceNet polled I/O : input instance number	70, 71, 101	71	71	71	\times	\times	
	P048	Inverter action on DeviceNet idle mode	00 (tripping), 01 (tripping after decelerating and stopping the motor), 02 (ignoring errors), 03 (stopping the motor after free-running), 04 (decelerating and stopping the motor)	01	01	01	\times	\times	
	P049	DeviceNet motor poles setting for RPM	$0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38$ (poles)	00	00	00	\times	\times	
	P055	Pulse-string frequency scale	1.0 to 50.0 (kHz)	25.0	25.0	25.0	\times	\bigcirc	
	P056	Time constant of pulse-string frequency filter	0.01 to 2.00 (s)	0.10	0.10	0.10	\times	\bigcirc	
	P057	Pulse-string frequency bias	-100. to +100. (\%)	0.	0.	0.	\times	\bigcirc	
	P058	Pulse-string frequency limit	0. to 100. (\%)	100.	100.	100.	\times	\bigcirc	
을000000000004	$\begin{aligned} & \text { P060 } \\ & \text { P067 } \\ & \hline \end{aligned}$	Multistage position setting 0-7	Position setting range reverse side - forward side (upper 4 digits including "-")	0	0	0	\bigcirc	\bigcirc	
	P068	Zero-return mode selection	$00(\mathrm{Low}) / 01$ (Hi1) / 00 (Hi2)	00	00	00	\bigcirc	\bigcirc	
	P069	Zero-return direction selection	00 (FW) / 01 (RV)	00	00	00	\bigcirc	\bigcirc	
	P070	Low-speed zero-return frequency	$0.00-10.00$ (Hz)	0.00	0.00	0.00	\bigcirc	\bigcirc	
	P071	High-speed zero-return frequency	$0.00-99.99$ / 100.0-Maximum frequency setting, 1st motor (Hz)	0.00	0.00	0.00	\bigcirc	\bigcirc	
	P072	Position range specification (forward)	$0-268435455$ (when P012 = 02) $0-1073741823$ (When P012 $=03$) (upper 4 digits)	268435455			\bigcirc	\bigcirc	
	P073	Position range specification (reverse)	$-268435455-0$ (when P012 = 02) -1073741823-0 (When P012 = 03) (upper 4 digits)	-268435455			\bigcirc	\bigcirc	
	P074	Teaching selection	00 (X00) / 01 (X01) / 02 (X02) / 03 (X 03$) / 04$ (X04) / 05 ($\mathrm{X05}) / 06$ (X06) / 07 (X07)	00	00	00	\bigcirc	\bigcirc	
愛	$\begin{aligned} & \hline \text { P100 } \\ & \text { P131 } \\ & \hline \end{aligned}$	Easy sequence user parameter $\mathrm{U}(00)$-(31)	0. to 9999., 1000 to 6553 (10000 to 65535)	0.	0.	0.	\bigcirc	\bigcirc	

PROTECTIVE FUNCTIONS

Name	Cause（s）		Display on digital operator	Display on remote operator／copy unit ERR1＊＊＊＊
Over－current protection	The inverter output was short－circuited，or the motor shaft is locked or has a heavy load．These conditions cause excessive current for the inverter，so the inverter output is turned off．	While at constant speed	E0	OC．Drive
		During deceleration	EOE	OC．Decel
		During acceleration	E03	OC．Accel
		Others	E04	Over．C
Overload protection（＊1）	When a motor overload is detected by the electronic thermal function，the inverter trips and turns off its output．		E05	Over．L
Braking resistor overload protection	When the regenerative braking resistor exceeds the usage time allowance or an over－voltage caused by the stop of the BRD function is detected，the inverter trips and turns off its output．		E06	OL．BRD
Over－voltage protection	When the DC bus voltage exceeds a threshold，due to regenerative energy from the motor，the inverter trips and turns off its output．		$E \square$	Over．V
EEPROM error（＊2）	When the built－in EEPROM memory has problems due to noise or excessive temperature，the inverter trips and turns off its output．		E0B	EEPROM
Under－voltage error	A decrease of internal DC bus voltage below a threshold results in a control circuit fault．This condition can also generate excessive motor heat or cause low torque．The inverter trips and turns off its output．		E09	Under．V
CT（Current transformer）error	If a strong source of electrical interference is close to the inverter or abnormal operations occur in the built－in CT，the inverter trips and turns off its output．		E 19	CT
CPU error	When a malfunction in the built－in CPU has occurred，the inverter trips and turns off its output．		E 1	CPU
External trip	When a signal to an intelligent input terminal configured as EXT has occurred，the inverter trips and turns off its output．		E12］	EXTERNAL
USP error	An error occurs when power is cycled while the inverter is in RUN mode if the Unattended Start Protection （USP）is enabled．The inverter trips and does not go into RUN mode until the error is cleared．		E13	USP
Ground fault	The inverter is protected by the detection of ground faults between the inverter output and the motor during power－up tests．This feature protects the inverter only．		E 14	GND．Flt．
Input over－voltage protection	When the input voltage is higher than the specified value，it is detected 60 seconds after power－up and the inverter trips and turns of its output．		E15	OV．SRC
Instantaneous power failure	When power is cut for more than 15 ms ，the inverter trips and turns off its output．If power failure continues， the error will be cleared．The inverter restarts if it is in RUN mode when power is cycled．		E16	Inst．P－F
Temperature error due to low cooling－fan speed	The inverter will display the error code shown on the right if the lowering of cooling－fan speed is detected at the occurrence of the temperature error described below．		Eご	OH．stFAN
Inverter thermal trip	When the inverter internal temperature is higher than the specified value，the thermal sensor in the inverter module detects the higher temperature of the power devices and trips，turning off the inverter output．		E2	OH FIN
Gate array error	Communication error has occurred between CPU and gate array．		Eこ3	GA
Phase loss detection	One of three lines of 3－phase power supply is missing．			PH．Fail
Main circuit error（＊3）	The inverter will trip if the gate array cannot confirm the on／off state of IGBT because of a malfunction due to noise or damage to the main circuit element．		Eこら	Main．Cir
IGBT error	When an instantaneous over－current has occurred，the inverter trips and turns off its output to protect main circuit element．		E30	IGBT
Thermistor error	When the thermistor inside the motor detects temperature higher than the specified value，the inverter trips and turns off its output．		E 3	TH
Braking error	The inverter turns off its output when it can not detect whether the braking is ON or OFF within waiting time set at b024 after it has released the brake．（When braking is enabled at b120）		E36	BRAKE
Emergency stop（＊4）	If the EMR signal（on three terminals）is turned on when the slide switch（SW1）on the logic board is set to ON，the inverter hardware will shut off the inverter output and display the error code shown on the right．		E37	EMR
Low－speed overload protection	If overload occurs during the motor operation at a very low speed at 0.2 Hz or less，the circuit in the inverter will detect the overload and shut off the inverter output．（2nd elect （Note that a high frequency may be recorded as the error history data．）	electronic thermal protection nic thermal control）	E38	OL－LowSP
Modbus communication error	If timeout occurs because of line disconnection during the communication in Mod will display the error code shown on the right．（The inverter will trip according to th	us－RTU mode，the inverter setting of＂C076＂．）	E41	NET．ERR
Out of operation due to under－voltage	Due to insufficient voltage，the inverter has turned off its output and been trying restart．If it fails to restart，it goes into the under－voltage error．		－－－－	UV．WAIT
Easy sequence function Error	Error indications by protective functions with the easy sequence function used．		［43）	PRG．CMD
			［44	PRG．NST
			E45	PRG．ERR1
Expansion card 1 connection error	An error has been detected in an expansion card or at its connecting terminals．			OP1－0～OP1－9
Expansion card 2 connection error			E70）E79	OP2－0～OP2－9

＊1：Reset operation is acceptable 10 seconds after the trip
＊2：Check the parameters when EEPROM error occurs．
＊3：The inverter will not accept reset commands input via the RS terminal or entered by the STOP／RESET key．Therefore，turn off the inverter power．
＊4：The inverter will not accept the reset command entered from the digital operator．Therefore，reset the inverter by turning on the RS terminal．

〈Status Display＞	Code	Description								
	0	Reset	2	Deceleration	4	Acceleration	6	Starting	8	Overload Restriction
	1	Stop	3	Constant Speed	5	f0 Stop	7	DB	9	Forcible or servo－on

〈How to access the details about the present fault〉

5000

2700

CONNECTING DIAGRAM

Source type logic

In case of 400 V class, place a transformer for operating circuit to receive 200 V .

CONNECTING DIAGRAM

Sink type logic

In case of 400 V class, place a transformer for operating circuit to receive 200 V .

CONNECTING TO PLC

CONNECTION WITH INPUT TERMINALS

1. USING INTERNAL POWER SUPPLY OF THE INVERTER

(1) Sink type logic

(2) Source type logic

Hitachi EH-150 series PLC SJ700
Output Module EH-YTP16
(Note: Place short-circuit bar between PLC and CM1 instead of P24 and PLC)
2.USING EXTERNAL POWER SUPPLY
(1) Sink type logic

Hitachi EH-150 series PLC SJ700
Output Module SJ700
(Note: Remove short-circuit bar
between P24 and PLC)
(2) Source type logic

Hitachi EH-150 series PLC SJ700
Output Module (Note: Remove short-circuit
EH-YTP16 bar between P24 and PLC)
(Note: Be sure to turn on the inverter after turning on the PLC and its external power source to prevent the parameters in the inverter from being modified.)

CONNECTION WITH OUTPUT TERMINALS

WIRING and ACCESSORIES

Items				SJ300 series	SJ700 series
Copying the parameter settings				you can copy the parameter settings from the SJ300 series into the SJ700 series. (you cannot copy the parameter settings from the SJ700 series to the SJ300 series because the SJ700 series has many new functions and additional parameters.)	
Parameter display mode.				No display mode selection. (full display)	Basic display mode/Data comparison function addition. Note:basic display mode [factory setting]) To display all parameters, specify "00" for "b037".
Change function		Retry or trip parameter		Instantaneous power failure/under-voltage/ overvoltage/overcurrent:It sets up by b001.	Instantaneous power failure/under-voltage:It sets up by b001. overvoltage/overcurrent:It sets up by b008.
		A016:External frequency filter time const.		Default:8	Default:31 Note 1
		A105:[OI]-[L] input start frequency enable		Default:01(external start frequency)	Default:00(0Hz)
		C025:Terminal [15] function		Default:08(instantaneous power failure)	Default:40(cooling-fan speed drop)
		b012, b212, b312: Electronic thermal function		Setting upper limit:120\%	Setting upper limit:100\%
		d007: Scaled output frequency monitoring		you can not change the output frequency setting by using the \triangle and/or ∇ key.	you can not change the output frequency setting by using the \triangle and/or ∇ key.
		A038:Jog frequency setting		Setting range:0 to 999Hz	Setting range: 0.01 to $999 \mathrm{~Hz}(0 \mathrm{~Hz}$ setup is impossible)
Terminal	Control Circuit	Removable		Removable	Removable (You can mount the SJ300 series into the SJ700 series.)
		Position		055 to 220L/H, 370 to 550L/H:same position. 300L/H:97mm upper part from SJ300.	
	Main Circuit	Screw diameter	300L	M8(Ground Screw)	M6(Ground Screw)
			450L	M10	M8
			370 H	M6	M8
		Position		055 to $110 \mathrm{~L} / \mathrm{H}: 10 \mathrm{~mm}$ upper part from SJ300. 150 to 300L/H:20mm upper part from SJ300.550L:30mm upper part from SJ300. 370, 450L/H, 550 to 1320 H :same position.	
		Arrangement		055 to 110L/H:Two steps, 150 to 550L/H:One step	055 to 550L/H:One step
		Others		150 to 220L/H:RB t here is not a terminal.	150 to 220L/H:RB t here is a terminal.
Easy-removable Dc bus Capacitor				All the models are possible.	15 kW or more is possible.
Dynamic Brake circuit				up to 11 kW	up to 22kW
Minimum value of resistor(Ω)		055L		17	16
		075L		17	10
		110L		17	10
		055H		50	35
		075H		50	35
Dimensions		Installation		055L/H: SJ700 is in next larger enclosure vs. SJ300. All other models are the same enclosure size.	
		External radiating fin		055L/H:Those with no compatibility. 075 to 550L/H:Those with compatibility. Note 2	
Digital operator position				055L/H:5mm upper part from SJ300. 300L/H:97mm upper part from SJ300. 075 to 220L/H, 370 to 1320L/H:same position.	
Option boards		SJ-DG		Those with compatibility.	
		SJ-FB			
		SJ-DN		Those with compatibility. Note:Since the SJ700 series has many new functions and additional parameters, some functions of the SJ-DN, SJ-LW, and SJ-PBT (option boards conforming to the open network specifications) cannot be implemented on the SJ700 series.	
		SJ-LW			
		SJ-PBT			
		Option boards		150 to 220L/H, 370L/H:same position.300L/H:97mm upper part from SJ300.	

Note1:Since a response falls the V/F characteristic curve selection SLV should make this setup small.
Note2:370, 450L/H and 550H:Metal fittings differ.

FOR CORRECT OPERATION

Application to Motors

[Application to general-purpose motors]

Operating frequency	The overspeed endurance of a general-purpose motor is 120% of the rated speed for 2 minutes (JIS C4,004). For operation at higher than 60 Hz , it is required to examine the allowable torque of the motor, useful life of bearings, noise, vibration, etc. In this case, be sure to consult the motor manufacturer as the maximum allowable rpm differs depending on the motor capacity, etc.
Torque characteristics	The torque characteristics of driving a general-purpose motor with an inverter differ from those of driving it using commercial power (starting torque decreases in particular). Carefully check the load torque characteristic of a connected machine and the driving torque characteristic of the motor.
Motor loss and temperature increase	An inverter-driven general-purpose motor heats up quickly at lower speeds. Consequently, the continuous torque level (output) will decrease at lower motor speeds. Carefully check the torque characteristics vs speed range requirements.
Noise	When run by an inverter, a general-purpose motor generates noise slightly greater than with commercial power.

[Application to special motors]

Gear motor	The allowable rotation range of continuous drive varies depending on the lubrication method or motor manufacturer. (Particularly in case of oil lubrication, pay attention to the low frequency range.)
Brake-equipped motor	For use of a brake-equipped motor, be sure to connect the braking power supply from the primary side of the inverter.
Pole-change motor	There are different kinds of pole-change motors (constant output characteristic type, constant torque characteristic type, etc.), with different rated current values. In motor selection, check the maximum allowable current for each motor of a different pole count. At the time of pole changing, be sure to stop the motor. Also see: Application to the 400V-class motor.
Submersible motor	The rated current of a submersible motor is significantly larger than that of the general-purpose motor. In inverter selection, be sure to check the rated current of the motor.
Explosion-proof motor	Inverter drive is not suitable for a safety-enhanced explosion-proof type motor. The inverter should be used in combination with a pressure-proof explosion-proof type of motor. *Explosion-proof verification is not available for SJ700 Series.
Synchronous (MS) motor High-speed (HFM) motor	In most cases, the synchronous (MS) motor and the high-speed (HFM) motor are designed and manufactured to meet the specifications suitable for a connected machine. As to proper inverter selection, consult the manufacturer.
Single-phase motor	A single-phase motor is not suitable for variable-speed operation by an inverter drive. Therefore, use a three-phase motor.

[Application to the 400V-class motor]

A system applying a voltage-type PWM inverter with IGBT may have surge voltage at the motor terminals resulting from the cable constants including the cable length and the cable laying method. Depending on the surge current magnification, the motor coil insulation may be degraded. In particular, when a 400 V -class motor is used, a longer cable is used, and critical loss can occur, take the following countermeasures:
(1) install the LCR filter between the inverter and the motor,
(2) install the AC reactor between the inverter and the motor, or
(3) enhance the insulation of the motor coil.

Notes on Use

[Drive]

Run/Stop

Emergency motor stop

High-frequency run

Run or stop of the inverter must be done with the keys on the operator panel or through the control circuit terminal. Do not operate by installing a electromagnetic contactor (Mg) in the main circuit.

When the protective function is operating or the power supply stops, the motor enters the free run stop state. When an emergency stop is required or when the motor should be kept stopped, use of a mechanical brake should be considered.

A max. 400 Hz can be selected on the SJ700 Series. However, a two-pole motor can attain up to approx. $24,000 \mathrm{rpm}$, which is extremely dangerous. Therefore, carefully make selection and settings by checking the mechanical strength of the motor and connected machines. Consult the motor manufacturer when it is necessary to drive a standard (general-purpose) motor above 60 Hz . A full line of high-speed motors is available from Hitachi.

[Installation location and operating environment]

Avoid installation in areas of high temperature, excessive humidity, or where moisture can easily collect, as well as areas that are dusty, subject to corrosive gasses, mist of liquid for grinding, or salt. Install the inverter away from direct sunlight in a well-ventilated room that is free of vibration. The inverter can be operated in the ambient temperature range from -10 to $50^{\circ} \mathrm{C}$. (Carrier frequency and output current must be reduced in the range of 40 to $50^{\circ} \mathrm{C}$.)

Installation of an AC reactor on the input side	In the following examples involving a general-purpose inverter, a large peak current flows on the main power supply side, and is able to destroy the converter module. Where such situations are foreseen or the connected equipment must be highly reliable, install an AC reactor between the power supply and the inverter. Also, where influence of indirect lightning strike is possible, install a lightning conductor. (A) The unbalance factor of the power supply is 3% or higher. (Note) (B) The power supply capacity is at least 10 times greater than the inverter capacity (the power supply capacity is 500 kVA or more). (C) Abrupt power supply changes are expected. Examples: (1) Several inverters are interconnected with a short bus. (2) A thyristor converter and an inverter are interconnected with a short bus. (3) An installed phase advance capacitor opens and closes. In cases (A), (B) and (C), it is recommended to install an AC reactor on the main power supply side. Note: Example calculation with $\mathrm{V}_{\mathrm{RS}}=205 \mathrm{~V}$, VST $=201 \mathrm{~V}$, $\mathrm{V}_{\text {TR }}=200 \mathrm{~V}$ $V_{R S}$: R-S line voltage, Vst : S-T line voltage, VTR : T-R line voltage $\begin{aligned} \text { Unbalance factor of voltage } & =\frac{\text { Max. line voltage }(m i n .)-\text { Mean line voltage }}{\text { Mean line voltage }} \times 100 \\ & =\frac{V_{\mathrm{RS}}-\left(V_{\mathrm{RS}}+V_{\mathrm{ST}}+V_{T R}\right) / 3}{\left(\mathrm{~V}_{\mathrm{RS}}+\mathrm{VST}_{\mathrm{ST}}+\mathrm{V}_{\mathrm{TR}}\right) / 3} \times 100=\frac{205-202}{202} \times 100=1.5(\%) \end{aligned}$
Using a private power generator	An inverter run by a private power generator may overheat the generator or suffer from a deformed output voltage waveform of the generator. Generally, the generator capacity should be five times that of the inverter (kVA) in a PWM control system, or six times greater in a PAM control system.

Notes on Peripheral Equipment Selection

Wiring connections		(1) Be sure to connect main power wires with $R(L 1), S(L 2)$, and $T(L 3)$ terminals (input) and motor wires to $U(T 1), V(T 2)$, and $W(T 3)$ terminals (output). (Incorrect connection will cause an immediate failure.) (2) Be sure to provide a grounding connection with the ground terminal ((\mathcal{D})).
Wiring between inverter and motor	Electromagnetic contactor	When an electromagnetic contactor is installed between the inverter and the motor, do not perform on-off switching during running operation.
	Thermal relay	When used with standard applicable output motors (standard three-phase squirrel-cage four-pole motors), the SJ700 Series does not need a thermal relay for motor protection due to the internal electronic protective circuit. A thermal relay, however, should be used: - during continuous running outside a range of 30 to 60 Hz . - for motors exceeding the range of electronic thermal adjustment (rated current). - when several motors are driven by the same inverter; install a thermal relay for each motor. - The RC value of the thermal relay should be more than 1.1 times the rated current of the motor. Where the wiring length is 10 m or more, the thermal relay tends to turn off readily. In this case, provide an AC reactor on the output side or use a current sensor.
Installing a circuit breaker		Install a circuit breaker on the main power input side to protect inverter wiring and ensure personal safety. Choose an inverter-compatible circuit breaker. The conventional type may malfunction due to harmonics from the inverter. For more information, consult the circuit breaker manufacturer.
Wiring distance		The wiring distance between the inverter and the remote operator panel should be 20 meters or less. When this distance is exceeded, use CVD-E (current-voltage converter) or RCD-E (remote control device). Shielded cable should be used on the wiring. Beware of voltage drops on main circuit wires. (A large voltage drop reduces torque.)
Earth leakage relay		If the earth leakage relay (or earth leakage breaker) is used, it should have a sensitivity level of 15 mA or more (per inverter).
Phase advance capacitor		Do not use a capacitor for power factor improvement between the inverter and the motor because the high-frequency components of the inverter output may overheat or damage the capacitor.

High-frequency Noise and Leakage Current

(1) High-frequency components are included in the input/output of the inverter main circuit, and they may cause interference in a transmitter, radio, or sensor if used near the inverter. The interference can be minimized by attaching noise filters (option) in the inverter circuitry.
(2) The switching action of an inverter causes an increase in leakage current. Be sure to ground the inverter and the motor.

Lifetime of Primary Parts

Because a DC bus capacitor deteriorates as it undergoes internal chemical reaction, it should normally be replaced every 10 ye ars. (10 years is not the guaranteed lifespan but rather, the expected design lifespan.) Be aware, however, that its life expectancy is considerably shorter when the inverter is subjected to such adverse factors as high temperatures or heavy loads exceeding the rated current of the inverter.
JEMA standard is the 5 years at ambient temperature $40^{\circ} \mathrm{C}$ used in 12 hours daily. (according to the " Instructions for Periodic Inspection of General-Purpose Inverter " (JEMA).)
Also, such moving parts as a cooling fan should be replaced. Maintenance inspection and parts replacement must be performed by only specified trained personnel.

Precaution for Correct Usage

- Before use, be sure to read through the Instruction Manual to insure proper use of the inverter.
- Note that the inverter requires electrical wiring; a trained specialist should carry out the wiring.
- The inverter in this catalog is designed for general industrial applications. For special applications in fields such as aircraft, outer space, nuclear power, electrical power, transport vehicles, clinics, and underwater equipment, please consult with us in advance.
- For application in a facility where human life is involved or serious losses may occur, make sure to provide safety devices to avoid a serious accident.
- The inverter is intended for use with a three-phase AC motor. For use with a load other than this, please consult with us.

Information in this brochure is subject to change without notice.

[^0]: [Unit : mm(inch)] Inches for reference only

